Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (1): 76-85    DOI: 10.13523/j.cb.20160111
综述     
内质网应激与疾病
陈娜子, 姜潮, 李校堃
温州医科大学药学院 浙江省生物技术与制药工程重点实验室 温州 325035
Role of Endoplasmic Reticulum Stress in Diseases
CHEN Na-zi, JIANG Chao, LI Xiao-kun
Wenzhou Medical College, Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province, Wenzhou 325035, China
 全文: PDF  HTML
摘要:

内质网是蛋白质合成与折叠、维持Ca2+动态平衡及合成脂类和固醇的场所。遗传或环境损伤引起内质网功能紊乱导致内质网应激,激活未折叠蛋白反应。未折叠蛋白反应是一种细胞自我保护性措施,但是内质网应激过强或持续时间过久可引起细胞凋亡。因此,内质网应激与众多人类疾病的发生发展密切相关。最近研究证明,癌症、炎症性疾病、代谢性疾病、骨质疏松症及神经退行性疾病等有内质网应激信号传递参与。然而内质网应激作为一个有效靶点参与各种疾病发挥作用的功能和机制仍然有待进一步研究。在近年来发表的文献基础上对内质网应激与疾病的关系,以及其可能的作用机制进行综述。

关键词: 内质网应激疾病未折叠蛋白反应细胞凋亡    
Abstract:

Endoplasmic reticulum (ER) is the site of protein synthesis, protein folding, maintainance of calcium homeostasis, synthesis of lipids and sterols. Genetic or environmental insults can alter its function generating ER stress. During ERS, protein misfolding and accumulation in the ER lumen initiate unfolded protein response(UPR) through a series of signal transduction pathways that produce various effects, including enhancing the ability of proteins to fold properly, accelerating protein degradation, increasing the probability of cell survival, and strengthening the selfrepair ability of the ER. Either ERS persists or activated excessively, eventually initiates cell apoptosis. Therefore, ER stress and UPR are implicated in the development of various diseases. Recent studies have demonstrated that ER stress and UPR signaling are involved in cancer, inflammatory diseases, metabolic disorders, osteoporosis and neurodegenerative diseases. However, the precise knowledge regarding involvement of ER stress in different disease processes is still debatable. Here the possible role of ER stress in various disorders on the basis of existing literature is discussed.

Key words: Diseases    Unfolded protein response (UPR)    Cell apoptosis    Endoplasmic reticulum(ER) stress
收稿日期: 2015-08-17 出版日期: 2016-01-11
ZTFLH:  Q343.315  
通讯作者: 李校堃     E-mail: chaojiang10@hotmail.com; xiaokunli@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈娜子
姜潮
李校堃

引用本文:

陈娜子, 姜潮, 李校堃. 内质网应激与疾病[J]. 中国生物工程杂志, 2016, 36(1): 76-85.

CHEN Na-zi, JIANG Chao, LI Xiao-kun. Role of Endoplasmic Reticulum Stress in Diseases. China Biotechnology, 2016, 36(1): 76-85.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160111        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I1/76

[1] Paschen W, Frandsen A. Endoplasmic reticulum dysfunction a common denominator for cell injury in acute and degenerative diseases of the brain. J Neurochem, 2001, 79(4):719-725.
[2] Schroder M, Kaufman R J. ER stress and the unfolded protein response. Mutat Res, 2005, 569(1-2):29-63.
[3] Zhang H Y, Wang Z G, Lu X H, et al. Endoplasmic reticulum stress: relevance and therapeutics in central nervous system diseases. Mol Neurobiol, 2015, 51(3): 1343-1352.
[4] Stefan C J, Manford A G, Emr S D. ER-PM connections: sites of information transfer and inter-organelle communication. Curr Opin Cell Biol, 2013, 25(4): 434-442.
[5] Tavassoli S, Chao J T, Young B P, et al. Plasma membrane-endoplasmic reticulum contact sites regulate phosphatidylcholine synthesis. EMBO Rep, 2013, 14(5): 434-440.
[6] Breckenridge D G, Germain M, Mathai J P,et al. Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene, 2003, 22(53):8608-8618.
[7] Volmer R, van der Ploeg K, Ron D. Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc Natl Acad Sci USA, 2013, 110(12):4628-4633.
[8] Hetz C, Chevet E, Harding H P. Targeting the unfolded protein response in disease. Nat Rev Drug Discov, 2013, 12(9):703-719.
[9] Szegezdi E, Logue S, Gorman A, et al. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep, 2006, 7(9): 880-885.
[10] Shen J, Chen X, Hendershot L, et al. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell, 2002, 3(1):99-111.
[11] Bertolotti A, Zhang Y, Hendershot L M, et al. Dynamic interaction of BiP and ER stress transducers in the unfoldedprotein response. Nat Cell Biol, 2000, 2:326-332.
[12] Jäger R, Bertrand M J, Gorman A M, etal. The unfolded protein response at the crossroads of cellular life and death during endoplasmic reticulum stress. Biol Cell, 2012, 104(5):259-270.
[13] Gorman A M, Healy S J, Jäger R, et al. Stress management at the ER: regulators of ER stress-induced apoptosis. Pharmacol Ther, 2012, 134(3):306-316.
[14] Logue S E, Cleary P, Saveljeva S, et al. New directions in ER stress-induced cell death. Apoptosis, 2013, 18(5):537-546.
[15] Bravo R, Gutierrez T, Paredes F, et al. Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics. Int J Biochem Cell Biol, 2012, 44(1): 16-20.
[16] Bravo R, Vicencio J M, Parra V, et al. Increased ER mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. J Cell Sci, 2011, 124(13):2143-2152.
[17] Sánchez A M, Martínez-Botas J, Malagarie-Cazenave S, et al. Induction of the endoplasmic reticulum stress protein GADD153/CHOP by capsaicin in prostate PC-3 cells: a microarray study. Biochem Biophys Res Commun, 2008, 372(4):785-791.
[18] Zinszner H, Kuroda M, Wang X, et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev, 1998, 12(7):982-995.
[19] Rizvi S H M, Parveen A, Verma A K, et al. Aluminium induced endoplasmic reticulum stress mediated cell death in SH-SY5Y neuroblastoma cell line is independent of p53. PLoS One, 2014, 9(5):e98409.
[20] Parveen A, Rizvi S H M, Mahdi F, et al. Silica nanoparticles mediated neuronal cell death in corpus striatum of rat brain: implication of mitochondrial, endoplasmic reticulum and oxidative stress. J Nanopart Res, 2014, 16:2664.
[21] McCullough K D, Martindale J L, Klotz L O, et al. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol, 2001, 21(4):1249-1259.
[22] Kim H, Tu H C, Ren D, et al. Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol Cell, 2009, 36(3):487-499.
[23] Rodriguez D, Rojas-Rivera D, Hetz C. Integrating stress signals at the endoplasmic reticulum: the BCL-2 protein family rheostat. Biochim Biophys Acta, 2011, 1813(4):564-574.
[24] Novoa I, Zeng H, Harding H P, et al. Feedback inhibition of the unfolded protein response by GADD34- mediated dephosphorylation of eIF2a. J Cell Biol, 2001, 153(5):1011-1021.
[25] Brush M H, Weiser D C, Shenolikar S. Growth arrest and DNA damage-inducible protein GADD34 targets protein phosphatase 1a to the endoplasmic reticulum and promotes dephosphorylation of the a subunit of eukaryotic translation initiation factor 2. Mol Cell Biol, 2003, 23(4):1292-1303.
[26] Kojima E, Takeuchi A, Haneda A, et al. The function of GADD34 is a recovery from a shutoff of protein synthesis induced by ER stress: elucidation by GADD34- deficient mice. FASEB J, 2003, 17(11):1573-1575.
[27] Yoneda T, Imaizumi K, Oono K, et al. Activation of Caspase- 12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem, 2001, 276(17):13935-13940.
[28] Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol, 2011, 13(3):184-190.
[29] Parveen A, Rizvi S H M, Gupta A, et al. NMR-based metabonomics study of sub-acute hepatotoxicity induced by silica nanoparticles in rats after intranasal exposure. Cell Mol (Noisy-le-Grand France), 2012, 58(1):196-203.
[30] Tripathi S, Mahdi A A, Nawab A, et al. Influence of age on aluminum induced lipid peroxidation and neurolipofuscin in frontal cortex of rat brain: abehavioral, biochemical and ultrastructural study. Brain Res, 2009, 1253(2):107-116.
[31] Tripathi S, Somashekar B S, Mahdi A A, et al. Aluminum-mediated metabolic changes in rat serum and urine: a proton nuclear magnetic resonance study. J Biochem Mol Toxicol, 2008, 22(2):119-127.
[32] Gorlach A, Klappa P, Kietzmann T. The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid Redox Signal, 2006, 8(9-10):1391-1418.
[33] Tu B P, Weissman J S. Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol, 2004, 164(3):341-346.
[34] Sevier C S, Kaiser C A. Ero1 and redox homeostasis in the endoplasmic reticulum. Biochim Biophys Acta, 2008, 1783(4): 549-556.
[35] Malhotra J D, Kaufman R J. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword. Antioxid Redox Signal, 2007, 9(12):2277-2293.
[36] Cioffi D L. Redox regulation of endothelial canonical transient receptor potential channels. Antioxid Redox Signal, 2011, 15(6): 1567-1582.
[37] Santos C X, Tanaka L Y, Wosniak J, et al. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial eletron transport, and NADPH oxidase. Antioxid Redox Signal, 2009, 11(10):2409-2427.
[38] Harding H P, Zhang Y, Zeng H, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell, 2003, 2003(11): 619-633.
[39] Rizvi F, Shukla S, Kakkar P. Essential role of PH domain and leucine-rich repeat protein phosphatase 2 in Nrf2 suppression via modulation of Akt/GSK3b/Fyn kinase axis during oxidative hepatocellular toxicity. Cell Death Dis, 2014, 27(5):e1153.
[40] Chevillard G, Blank V. NFE2L3 (NRF3): the Cinderella of the Cap'n'Collar transcription factors. Cell Mol Life Sci, 2011, 68(20): 3337-3348.
[41] Zhang Y, Hayes J D. Identification of topological determinants in the N-terminal domain of transcription factor Nrf1 that control its orientation in the endoplasmic reticulum membrane. Biochem J, 2010, 430(3):497-510.
[42] Cullinan S B, Diehl J A. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem, 2004, 279(19):20108-20117.
[43] Cullinan S B, Zhang D, Hannink M, et al. Nrf2 is a direct PERK substrate and effector of PERK dependent cell survival. Mol Cell Biol, 2003, 23(20): 7198-7209.
[44] Garg A D, Kaczmarek A, Krysko O, et al. ER stress induced inflammation: does it aid or impede disease progression. Trends Mol Med, 2012, 10(10):589-598.
[45] Chaudhari N, Talwar P, Parimisetty A, et al. A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Front Cell Neurosci, 2014, 29(8):213.
[46] Lin J H, Walter P, Yen T S B. Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol, 2008, 3(5):399-425.
[47] Hotamisligil G S. Role of endoplasmic reticulum stress and c- Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes. Diabetes, 2005, 54(Suppl 2):S73-S78.
[48] Verfaillie T, Garg A D, Agostinis P. Targeting ER stress induced apoptosis and inflammation in cancer. Cancer Lett, 2010, 332(2): 249-264.
[49] Hotamisligil G S, Erbay E. Nutrient sensing and inflammation in metabolic diseases. Nat Rev Immunol, 2008, 8(12):923-934.
[50] Zhang K, Kaufman R J. From endoplasmic-reticulumstress to the inflammatory response. Nature, 2008, 454(7):455-462.
[51] Rius J, Guma M, Schachtrup C, et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature, 2008, 453(7196):807-811.
[52] Angel P, Szabowski A, Schorpp-Kistner M. Function and regulation of AP-1 subunits in skin physiology and pathology. Oncogene, 2001, 20(19):2413-2423.
[53] Vandanmagsar B, Youm Y H , Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med, 2011, 17:179-188.
[54] Horng T, Hotamisligil G S. Linking the inflammasome to obesity- related disease. Nat Med, 2011, 17(2):164-165.
[55] Shenderov K, Riteau N, Yip R, et al. Cutting edge:endoplasmic reticulum stress liceses macrophages to produce mature IL-1beta in response toTLR4stimulation through a caspase-8- and TRIF-dependent pathway. J Immunol, 2014, 192(2):2029-2033.
[56] Oslowski C M, Hara T, O'sullivan-Murphy B, et al. Thioredoxin-interacting protein mediates ERstress-induced beta cell death through initiation of the inflammasome. Cell Metab, 2012, 16(2):265-273.
[57] Zhang P, McGrath B, Li S, et al. The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol Cell Biol, 2002, 22(11):3864-3874.
[58] Harding H P, Zeng H, Zhang Y, et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol Cell, 2001, 7(6):1153-1163.
[59] Goltzman D. Discoveries, drugs and skeletal disorders. Drug Discov, 2002, 1(10):784-796.
[60] Boyle W J, Simonet W S, Lacey D L. Osteoclast differentiation and activation. Nature, 2003, 423(6937):337-342.
[61] He L, Lee J, Jang J H, et al. Osteoporosis regulation by salubrinal through eIF2a mediated differentiation of osteoclast and osteoblast. Cell Signal, 2013, 25(2):552-560.
[62] Norris R, Parker M. Diabetes mellitus and hip fracture: a study of 5966 cases. Injury, 2011, 42(11):1313-1316.
[63] Follak N, Kloting I, Merk H. Influence of diabetic metabolic state on fracture healing in spontaneously diabetic rats. Diabetes Metab Res Rev, 2005, 21(3):288-296.
[64] Liu W, Zhu X, Wang Q, et al. Hyperglycemia induces endoplasmic reticulum stress-dependent CHOP expression in osteoblasts. Exp Ther Med, 2013, 5(5):1289-1292.
[65] Tohmonda T, Chiba K, Toyama Y, et al. Unfolded protein response mediator, the IRE1a-XBP1 pathway is involved in osteoblast differentiation. Arthritis Res Ther, 2012, 14(Suppl 1):70.
[66] Hino S, Kondo S, Yoshinaga K, et al. Regulation of ER molecular chaperone prevents bone loss in a murine model for osteoporosis. J Bone Miner Metab, 2010, 28(2):131-138.
[67] Schonthal A H. Pharmacological targeting of endoplasmic reticulum stress signaling in cancer. Biochem Pharmacol, 2013, 85(5):653-666.
[68] Wang S, Kaufman R J. The impact of the unfolded protein response on human disease. J Cell Biol, 2012, 197(7):857-867.
[69] Fernandez P M, Tabbara S O, Jacobs L K, et al. Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions. Breast Cancer Res Treat, 2000, 59(1):15-26.
[70] Lee A S. GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res, 2007, 67(8):3496-3499.
[71] Li J, Lee A S. Stress induction of GRP78/BiP and its role in cancer. Curr Mol Med, 2006, 6(10):45-54.
[72] Uramoto H, Sugio K, Oyama T, et al. Expression of endoplasmic reticulum molecular chaperone Grp78 in human lung cancer and its clinical significance. Lung Cancer, 2005, 49(1):55-62.
[73] Wang Q, He Z, Zhang J, et al. Over expression of endoplasmic reticulum molecular chaperone GRP94 and GRP78 in human lung cancer tissues and its significance. Cancer Detect Prev, 2005, 29(6):544-551.
[74] Wang X P, Qiu F R, Liu G Z, et al. Correlation between clinicopathology and expression of heat shock protein 70 and glucose-regulated protein 94 in human colonic adenocarcinoma. World J Gastroenterol, 2005, 11(7):1056-1059.
[75] Zheng H C, Takahashi H, Li X H, et al. Overexpression of GRP78 and GRP94 are markers for aggressive behavior and poor prognosis in gastric carcinomas. Hum Pathol, 2008, 39(7):1042-1049.
[76] Dong D, Ni M, Li J, et al. Critical role of the stress chaperone GRP78/BiP in tumor proliferation, survival, and tumor angiogenesis in transgene-induced mammary tumor development. Cancer Res, 2008, 68(1):498-505.
[77] Jamora C, Dennert G, Lee A S. Inhibition of tumor progression by suppression of stress protein GRP78/BiP induction in fibrosarcoma B/C10ME. Proc Natl Acad Sci USA, 1996, 93(15): 7690-7694.
[78] Fels D R, Koumenis C. The perk/eif2alpha/atf4 module of the upr in hypoxia resistance and tumor growth. Cancer Biol Ther, 2006, 5(7):723-728.
[79] Bobrovnikova-Marjon E, Grigoriadou C, Pytel D, et al. Perk promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage. Oncogene, 2010, 29(27):3881-3895.
[80] Healy S J, Gorman A M, Mousavi-Shafaei P,et al. Targeting the endoplasmic reticulum-stress response as an anticancer strategy. Eur J Pharmacol, 2009, 625(1-3):234-246.
[81] Pluquet O, Hainaut P. Genotoxic and non-genotoxic pathways of p53 induction. Cancer Lett, 2001, 174(1):1-15.
[82] Madan E, Gogna R, Bhatt M, et al. Regulation of glucose metabolism by p53: emerging new roles for the tumor suppressor. Oncotarget, 2011, 2(12):948-957.
[83] Madan E, Gogna R, Kuppusamy P, et al. SCO2 induces p53-mediated apoptosis by Thr845 phosphorylation of ASK-1 and dissociation of the ASK-1-Trxcomplex. Mol Cell Biol, 2013, 33(7):1285-1302.
[84] Madan E, Gogna R, Kuppusamy P, et al. TIGAR induces p53-mediated cell-cycle arrest by regulation of RB-E2F1 complex. Br J Cancer, 2012, 107(3):516-526.
[85] Qu L, Huang S, Baltzis D, et al. Endoplasmic reticulum stress induces p53 cytoplasmic localization and prevents p53-dependent apoptosis by a pathway involving glycogen synthase kinase-3b. Genes Dev, 2004, 18(3):261-277.
[86] Elena S, Elena S, Halazonetis T D. p53 and stress in the ER. Genes Dev, 2004, 18:241-244.
[87] Tabira T, Chui D H, Kuroda S. Significance of the intracellular Ab42 accumulation in Alzheimer's disease. Front Biosci, 2002, 7(4):44-49.
[88] Baba M, Nakajo S, Tu P H, et al. Aggregation of a-synuclein in lewy bodies of sporadic Parkinson's disease and dementia with lewy bodies. Am J Pathol, 1998, 152(4):879-884.
[89] Anand R, Gill K D, Mahdi A A. Therapeutics of Alzheimer's disease: past, present and future. Neuropharmacology, 2014, 76(PtA): 27-50.
[90] Cook D G, Sung J C, Golde T E, et al. Expression and analysis of presenilin 1 in a human neuronal system: localization in cell bodies and dendrites. Proc Natl Acad Sci USA, 1996, 93(17):9223-9228.
[91] Katayama T, Imaizumi K, Honda A, et al. Disturbed activation of endoplasmic reticulum stress transducers by familial Alzheimer's disease-linked presenilin-1 mutations. J Biol Chem, 2001, 276(46):43446-43454.
[92] Hoozemans J J M, van Haastert E S, Nijholt D A T, et al. The unfolded protein response is activated in pretangle neurons in Alzheimer's disease hippocampus. Am J Pathol, 2009, 174(4):1241-1251.
[93] Unterberger U, Hoftberger R, Gelpi E, et al. Endoplasmic reticulum stress features are prominent in Alzheimer's disease but not in prion diseases in vivo. J Neuropathol Exp Neurol, 2006, 65(4):348-357.
[94] Gupta S D A, Deepti A, Deegan S, et al. HSP72 protects cells from ER stress induced apoptosis via enhancement of IRE1a-XBP1 signaling through a physical interaction. PLoS Biol, 2010, 8:e1000410.
[95] Acosta-Alvear D, Zhou Y, Blais A, et al. XBP1 controls diverse cell type- and conditionspecific transcriptional regulatory networks. Mol Cell, 2007, 27(1):53-66.
[96] Coleman P D, Yao P J. Synaptic slaughter in Alzheimer's disease. Neurobiol Aging, 2003, 24(8):1023-1027.
[97] Marwarha G, Raza S, Prasanthi J R P, et al. Gadd153 and NF-κB crosstalk regulates 27-hydroxycholesterol-induced increase in BACE1 and b-amyloid production in human neuroblastoma SH-SY5Y cells. PLoS One, 2013, 8:e70773.
[98] Paula-Lima A C, Adasme T, SanMartin C, et al. Amyloid b-peptide oligomers stimulate RyR-mediated Ca2+ release inducing mitochondrial fragmentation in hippocampal neurons and prevent RyR-mediated dendritic spine remodeling produced by BDNF. Antioxid Redox Signal, 2011, 14(7):1209-1223.
[99] Querfurth H W, Selkoe D J. Calcium ionophore increases amyloid- beta peptide production by cultured cells. Biochemistry, 1994, 33(15):4550-4561.
[100] Green K N, LaFerla F M. Linking calcium to A beta and Alzheimer's disease. Neuron, 2008, 59(2):190-194.
[101] Ferreiro E, Pereira C M F. Endoplasmic reticulumstress: a new play ER in tauopathies. J Pathol, 2012, 226(5):687-692.
[102] Hoozemans J J, Scheper W. Endoplasmic reticulum: the unfolded protein response is tangled in neurodegeneration. Int J Biochem Cell Biol, 2012, 44(8):1295-1298.
[103] Ballatore C, Lee V M, Trojanowski J Q. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat Rev Neurosci, 2007, 8(9):663-672.
[104] Cláudia M F. Pereira Crosstalk between endoplasmic reticulum stress and protein misfolding in neurodegenerative diseases. ISRN Cell Biol, 2013, Open Access Overview. . http://scholar.google.com/scholar?cluster=6987874543115927542&hl=zh-CN&as_sdt=0,5
[105] Healy D G, Abou-Sleiman P M, Wood N W. PINK, PANK, or PARK? A clinicians' guide to familial parkinsonism. Lancet Neurol, 2004, 3(11):652-662.
[106] Mercado G, Valdes P, Hetz C. An ERcentric view of Parkinson's disease. Trends Mol Med, 2013, 19(3):165-175.
[107] Zhou J X, Zhang H B, Huang Y, et al. Tenuigenin attenuates alphasynuclein- induced cytotoxicity by down-regulating polo-like kinase 3. CNS Neurosci Ther, 2013, 19(9):688-694.
[108] Sado M, Yamasaki Y, Iwanaga T, et al. Protective effect against Parkinson's disease-related insults through the activation of xbp1. Brain Res, 2009, 1257(2):16-24.
[109] Egawa N, Yamamoto K, Inoue H, et al. The endoplasmic reticulum stress sensor, atf6α protects against neurotoxin-induced dopaminergic neuronal death. J Biol Chem, 2010, 286(10):7947-7957.
[110] Brundin P, Li J Y, Holton J L, et al. Research in motion: the enigma of Parkinson's disease pathology spread. Nat Rev Neurosci, 2008, 9(10):741-755.
[111] Smith W W, Jiang H, Pei Z, et al. Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity. Hum Mol Genet, 2005, 14(24):3801-3811.
[112] Tong Y, Yamaguchi H, Giaime E, et al. Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of a-synuclein, and apoptotic cell death in aged mice. Proc Natl Acad Sci USA, 2010,107(21):9879-9884.
[113] Vitte J, Traver S, Maués De Paula A M, et al. Leucine-rich repeat kinase 2 is associated with the endoplasmic reticulum in dopaminergic neurons and accumulates in the core of Lewy bodies in Parkinson disease. J Neuropathol Exp Neurol, 2010, 69(9):959-972.
[114] Yuan Y, Cao P, Smith M A, et al. Dysregulated LRRK2 signaling in response to endoplasmic reticulum stress leads to dopaminergic neuron degeneration in C. elegans. PLoS One, 2011, 6(8):e22354.
[115] Murakami T, Shoji M, Imai Y, et al. Pael-R is accumulated in Lewy bodies of Parkinson's disease. Ann Neurol, 2004, 55(3):439-442.
[116] Imai Y, Soda M, Inoue H, et al. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell, 2001, 105(7):891-902.
[117] Imai Y, Soda M, Takahashi R. Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitinprotein ligase activity. J Biol Chem, 2000, 275(46):35661-35664.
[118] Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 1998, 392(6676):605-608.
[119] Mizuno Y, Hattori N, Matsumine H. Neurochemical and neurogenetic correlates of Parkinson's disease. J Neurochem, 1998, 1998(71):893-902.
[120] Omura T, Kaneko M, Okuma Y, et al. Endoplasmic reticulum stress and Parkinson's disease: the role of HRD1 in averting apoptosis in neurodegenerative disease. Oxid Med Cell Longev, 2013, Open Access Overview. . http://www.hindawi.com/journals/omcl/2013/239854/.

[1] 谈沛林,张莹,张竣,高笑,王树坤,侯琳,袁增强. 二甲双胍(Metformin)在少突胶质前体细胞分化中的作用和机制*[J]. 中国生物工程杂志, 2021, 41(9): 1-9.
[2] 朱嘉豪,陈婷,习欠云. miR-146a参与不同疾病的研究进展*[J]. 中国生物工程杂志, 2021, 41(9): 64-70.
[3] 董雪迎,梁凯,叶克应,周策凡,唐景峰. 受体酪氨酸激酶对自噬的调控及其研究进展*[J]. 中国生物工程杂志, 2021, 41(5): 72-78.
[4] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[5] 唐德平,邢梦洁,宋文涛,姚慧慧,毛爱红. microRNA治疗在癌症及其他疾病中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 64-73.
[6] 张莹,孔祥熙,侯琳,王树坤,袁增强. Ozanimod(RPC1063)在少突胶质前体细胞分化中的作用和机制 *[J]. 中国生物工程杂志, 2020, 40(6): 10-19.
[7] 刘迪,张洪春. 慢性阻塞性肺疾病基因工程动物模型研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 59-68.
[8] 杨丹,田海山,李校堃. 成纤维细胞生长因子5的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 117-124.
[9] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[10] 梅雅贤,王玥,罗文新. 纳米抗体在传染病的预防、诊断和治疗中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 24-34.
[11] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[12] 朱颖,范梦恬,李具琼,陈彬,张盟浩,吴静红,施琼. 趋化因子受体CX3CR1调控人主动脉瓣膜间质细胞成骨分化的作用研究 *[J]. 中国生物工程杂志, 2019, 39(8): 7-16.
[13] 刘叶,潘玥,郑魏,胡晶. miR-186-5p在酒精诱导的心肌细胞中高表达并通过靶基因XIAP调控细胞凋亡水平 *[J]. 中国生物工程杂志, 2019, 39(5): 53-62.
[14] 杨春艳,王磊,穆登彩,李芳芳,沈昊,郑尚永. 基因编辑技术在疾病治疗中的研究进展 *[J]. 中国生物工程杂志, 2019, 39(11): 87-95.
[15] 徐然,陈松. CRISPR/Cas9运输系统的研究进展及其在基因相关疾病方面的应用 *[J]. 中国生物工程杂志, 2018, 38(3): 81-88.