Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (09): 118-123    DOI: Q814.9
    
Key Technologies and Progress of Amperometric Biosensors Based on Dehydrogenases
ZHENG Hui1,2,LI Qiu-shun1,2,GAO Guang-heng1,2,ZHANG Li-qun1,2,MA Yao-hong1,2,SHI Jian-guo1,2
1.Shandong Key Laboratory for Biosensors, Jinan 250014, China
2.Biology Institute, Shandong Academy of Sciences, Jinan 250014, China
Download: HTML   PDF(436KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Dehydrogenases, which use nicotinamide adenine dinucleotide (NAD+) or nicotinamide adenine dinucleotide phosphate (NADP+) as the coenzyme for their catalyzed reactions, are the most important group of oxidoreductases in the nature. In recent years, Biosensors based on NAD(P)+-dependent dehydrogenases have been developed rapidly. Two key technologies are quite important for the construction of these biosensors. One is the electrochemical regeneration of oxidated form of coenzyme, and another is the coenzyme immobilization in electrode surface. This paper reviews methods to aid the electrochemical regeneration of coenzyme. Common ways of coenzyme immobilization were also introduced. In addition, research progress of the two key technologies was reviewed.



Key wordsCoenzyme regeneration      Electrocatalytic oxidation      Coenzyme immobilization      Dehydrogenase      Biosensor     
Received: 05 May 2010      Published: 25 August 2010
Cite this article:

ZHENG Hui, LI Qiu-Shun, GAO An-Heng, ZHANG Li-Qun, MA Yao-Hong, SHI Jian-Guo. Key Technologies and Progress of Amperometric Biosensors Based on Dehydrogenases. China Biotechnology, 2010, 30(09): 118-123.

URL:

https://manu60.magtech.com.cn/biotech/Q814.9     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I09/118

[1] 周敬丽, 聂萍萍, 郑海涛, 等. 脱氢酶电化学生物传感器的研究进展. 分析化学, 2009, 37(04): 617623. Zhou J L, Nie P P, Zheng H T, et al. Chinese Journal of Analytical Chemistry, 2009, 37(04): 617623. 
[2] Bhavana A D, Michael S F. Reactivity of Poly(anilineboronic acid) with NAD+ and NADH. Chem. Mater., 2005, 17: 29182923. 
[3] Chaubey A, Malhotra B D. Mediated biosensors. Biosens Bioelectron, 2002, 17(67): 441456. 
[4] Pandey P C, Upadhyay S, Upadhyay B C, et al. Ethanol biosensors and electrochemical oxidation of NADH. Anal Biochem, 1998, 260(2): 195203. 
[5] Senol A, Azmi T. Development of an alcohol dehydrogenase biosensor for ethanol determination with toluidine blue O covalently attached to a cellulose acetate modified electrode. Sensors, 2010, 10: 748764. 
[6] Mecheri B, Piras L, Caminati G. LangmuirBlodgett films incorporating redox mediators for molecular recognition of NADH. Bioelectrochemistry, 2004, 63(12): 1318. 
[7] Silva R P, Serrano S H. Electrochemical oxidation of biological molecules at carbon paste electrodes pretreated in guanine solutions. J Pharm Biomed Anal, 2003, 33(4): 735744. 
[8] Gao Q, Wang W, Ma Y, et al. Electrooxidative polymerization of phenothiazine derivatives on screenprinted carbon electrode and its application to determine NADH in flow injection analysis system. Talanta, 2004, 62(3): 477482. 
[9] Bergel A, Souppe J, Comtat M. Enzymatic amplification for spectrophotometric and electrochemical assays of NAD+ and NADH. Anal Biochem, 1989, 179(2): 382388. 
[10] Sefcovicova J, Vikartovska A, Patoprsty V, et al. Offline FIA monitoring of Dsorbitol consumption during Lsorbose production using a sorbitol biosensor. Anal Chim Acta, 2009, 644(12): 6871. 
[11] Gamella M, Campuzano S, Conzuelo F, et al. Integrated multienzyme electrochemical biosensors for monitoring malolactic fermentation in wines. Talanta, 2010, 81(3): 925933. 
[12] Woodbury R G, Wendin C, Clendenning J, et al. Construction of biosensors using a goldbinding polypeptide and a miniature integrated surface plasmon resonance sensor. Biosens Bioelectron, 1998, 13(10): 11171126. 
[13] Liu A, Watanabe T, Honma I, et al. Effect of solution pH and ionic strength on the stability of poly(acrylic acid)encapsulated multiwalled carbon nanotubes aqueous dispersion and its application for NADH sensor. Biosens Bioelectron, 2006, 22(5): 694699. 
[14] Zhu L, Zhai J, Yang R, et al. Electrocatalytic oxidation of NADH with Meldola's blue functionalized carbon nanotubes electrodes. Biosens Bioelectron, 2007, 22(11): 27682773. 
[15] Rahman M M. Highsensitive glutamate biosensor based on NADH at Lauth's violet_multiwalled carbon nanotubes composite film on gold substrates. J. Phys. Chem, 2009, 113: 15111516. 
[16] Zeng J X, Gao X H, Wei W Z, et al. Fabrication of carbon nanotubes/poly(1,2diaminobenzene) nanoporous composite via multipulse chronoamperometric electropolymerization process and its electrocatalytic property toward oxidation of NADH. Sensors and Actuators B: Chemical, 2007, 120(2): 595602. 
[17] Tasca F, Gorton L, Wagner J B, et al. Increasing amperometric biosensor sensitivity by length fractionated singlewalled carbon nanotubes. Biosens Bioelectron, 2008, 24(2): 272278. 
[18] Ouyang M, Huang J L, Lieber C M. Fundamental electronic properties and applications of singlewalled carbon nanotubes. Acc Chem Res, 2002, 35(12): 10181025. 
[19] Chakraborty S, Raj C R. Mediated electrocatalytic oxidation of bioanalytes and biosensing of glutamate using functionalized multiwall carbon nanotubesbiopolymer nanocomposite. Journal of Electroanalytical Chemistry, 2007, 609(2): 155162. 
[20] Manso J, Mena M L, YáezSedeo P, et al. Alcohol dehydrogenase amperometric biosensor based on a colloidal goldcarbon nanotubes composite electrode. Electrochimica Acta, 2008, 53(11): 40074012. 
[21] Jena B K, Raj C R. Amperometric lLactate biosensor based on gold nanoparticles. Electroanalysis, 2007, 19: 816 – 822. 
[22] Cheng J, Di J, Hong J, et al. The promotion effect of titania nanoparticles on the direct electrochemistry of lactate dehydrogenase solgel modified gold electrode. Talanta, 2008, 76(5): 10651069. 
[23] 吕陈秋, 姜忠义, 王姣. 烟酰型辅酶NAD(P)+和NAD(P)H再生的研究进展. 有机化学, 2004, 24(11): 13661379. Lu C Q, Jiang Z Y, Wang J. Chinese Journal of Organic Chemistry, 2004, 24(11): 13661379. 
[24] 张小里, 岑沛霖. 伴有辅酶再生的多酶反应技术进展. 化工进展, 1996, 6: 5052. Zhang X L, Cen P L. Chem Ind Eng Prog, 1996, 6: 5052. 
[25] 吴洪, 姜忠义, 黄淑芳, 等. 溶胶凝胶法包埋生物活性分子. 现代化工, 2002, 22(7): 6063. Wu H, Jiang Z Y, Huang S F, et al. Modern Chemical Industry, 2002, 22(7): 6063. 
[26] 姜忠义, 吴洪, 许松伟, 等. 溶胶凝胶固定化多酶催化二氧化碳转化为甲醇反应初探. 催化学报, 2002, 23(2): 162164. Jiang Z Y, Wu H, Xu S W, et al. Chinese Journal of Catalysis, 2002, 23(2): 162164. 
[27] 王秋雨, 钦传光, 左小佳, 等. 伴有辅酶再生的生物催化过程. 化学通报, 2009, 07: 587593. Wang Q Y, Qin C G, Zuo X J, et al. Biocatalyst System with the Regeneration of Coenzyme. 2009, 07: 587593. 
[28] Mak K K, Wollenberger U, Scheller F W, et al. An amperometric bienzyme sensor for determination of formate using cofactor regeneration. Biosens Bioelectron, 2003, 18(9): 10951100. 
[29] Suye S I, Aramoto Y, Nakamura M, et al. Electrochemical reduction of immobilized NADP+ on a polymer modified electrode with a copolymerized mediator. Enzyme and Microbial Technology, 2002, 30(2): 139144. 
[30] Suye S I, Zheng H T, Okada H, et al. Assembly of alternating polymerized mediator, polymerized coenzyme, and enzyme modified electrode by layerby layer adsorption technique. Sensors and Actuators B: Chemical, 2005, 108(12): 671675. 
[31] Gros P, Comtat M. A bioelectrochemical polypyrrolecontaining Fe(CN)6(3) interface for the design of a NADdependent reagentless biosensor. Biosens Bioelectron, 2004, 20(2): 204210. 
[32] Antiochia R, Gorton L. Development of a carbon nanotube paste electrode osmium polymermediated biosensor for determination of glucose in alcoholic beverages. Biosens Bioelectron, 2007, 22(11): 26112617. 
[33] Zhou H, Zhang Z, Yu P, et al. Noncovalent attachment of NAD+ cofactor onto carbon nanotubes for preparation of integrated dehydrogenasebased electrochemical biosensors. Langmuir, 2010, 26(8): 60286032. 
[34] Rahman M M, Shiddiky M J A, Rahman M A, et al. A lactate biosensor based on lactate dehydrogenase/nictotinamide adenine dinucleotide (oxidized form) immobilized on a conducting polymer/multiwall carbon nanotube composite film. Analytical Biochemistry, 2009, 384(1): 159165. 
[35] Morales A, Céspedes F, Alegret S. Graphitemethacrylate biocomposite material with renewable sensing surface for reagentless amperometric biosensors based on glucose dehydrogenase. Materials Science and Engineering: C, 2000, 7(2): 99104. 
[36] Hassler B L, Kohli N, Zeikus J G, et al. Renewable dehydrogenasebased interfaces for bioelectronic applications. Langmuir, 2007, 23(13): 71277133. 
[37] Meng L, Wu P, Chen G, et al. Low potential detection of glutamate based on the electrocatalytic oxidation of NADH at thionine/singlewalled carbon nanotubes composite modified electrode. Biosens Bioelectron, 2009, 24(6): 17511756.

[1] XU Wen-juan,SONG Dan,CHEN Dan,LONG Hui,CHEN Yu-bao,LONG Feng. Research Progress of Pathogen Detection Technologies Based on CRISPR/CAS Biosensor[J]. China Biotechnology, 2021, 41(8): 67-74.
[2] TANG Meng-tong,WANG Zhao-guan,LI Jiao-jiao,QI Hao. Application of Terminal Deoxynucleotidyl Transferase in Biosensors and Nucleic Acid Synthesis[J]. China Biotechnology, 2021, 41(5): 51-64.
[3] ZHANG Zheng-yan,CHEN Yu,SONG Li-jie,SU Zheng-quan,ZHANG Hai-yan. Advances in the Application of Field Effect Transistor Biosensor in Biomedical Detection[J]. China Biotechnology, 2021, 41(10): 73-88.
[4] DENG Tong,ZHOU Hai-sheng,WU Jian-ping,YANG Li-rong. Enhance Soluble Heteroexpression of a NADPH-Dependent Alcohol Dehydrogenase Based on the Chaperone Strategy[J]. China Biotechnology, 2020, 40(8): 24-32.
[5] HAO Xiao-ting,LIU Jun-jie,DENG Yu-lin,ZHANG Yong-qian. Radiation Biosensor Based on Promoter of SOS Reaction and Oxidative Stress Reaction[J]. China Biotechnology, 2020, 40(7): 30-40.
[6] CHENG Ping,ZHANG Yang-zi,MA Xuan,CHEN Xu,ZHU Bao-qing,XU Wen-tao. Properties and Applications of Stimuli-Responsive DNA Hydrogels[J]. China Biotechnology, 2020, 40(3): 132-143.
[7] SUN Qing,LIU De-hua,CHEN Zhen. Research Progress of Methanol Utilization and Bioconversion[J]. China Biotechnology, 2020, 40(10): 65-75.
[8] WANG Gang,XIAO Yu,LI Yi,LIU Zhi-gang,PEI Cheng-li,WU Li-da,LI Yan-li,WANG Xi-qing,ZHANG Ming-lei,CHEN Guang,TONG Yi. Effect of ldhL Gene Knock out Mutant on Lactobacillus delbrueckii subsp. blgaricus Producing L-lactic Acid[J]. China Biotechnology, 2019, 39(8): 66-73.
[9] LI Hang,WANG Tong. Research Progress on Overcoming Debye Screening Effect of Silicon Nanowire Field-effect Transistor Biosensor[J]. China Biotechnology, 2019, 39(10): 112-116.
[10] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[11] Wen-jing WANG,Li-yu YANG,Chan-juan LIU,Jin ZHAO,Qin LUO. Effect of Glutamate Dehydrogenase Deletion on Biofilm Formation,Virulence and Extracellular Proteins Expression of Listeria monocytogenes[J]. China Biotechnology, 2018, 38(9): 1-11.
[12] Fang CHEN,Gang XU,Li-rong YANG,Jian-ping WU. Enhancing the Activity of LkTADH by Site-Directed Mutagenesis to Prepare Key Chiral Block of Statins[J]. China Biotechnology, 2018, 38(9): 59-64.
[13] Nan WANG,Lv-hua JIN,Ling ZHANG,Rong LIN,Hai-lin YANG. The Effect of Signal Peptides on the Expression of Leucine Dehydrogenase and Enzymatic Properties in Bacillus subtilis[J]. China Biotechnology, 2018, 38(4): 46-53.
[14] Cun-duo TANG,Hong-ling SHI,Yue MA,Peng-ju DING,Jian-he XU,Yun-chao KAN,Lun-guang YAO. Gene Mining, Expression and Characterization of Novel R-mandelate Dehydrogenases[J]. China Biotechnology, 2018, 38(2): 30-37.
[15] ZHANG Ling,WANG Nan,JIN Lv-hua,LIN Rong,YANG Hai-lin. To Promote the Expression of Leucine Dehydrogenase in Bacillus subtilis via Dual-Promoter and Fermentation Research[J]. China Biotechnology, 2018, 38(12): 21-31.