Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (10): 112-116    DOI: 10.13523/j.cb.20191014
    
Research Progress on Overcoming Debye Screening Effect of Silicon Nanowire Field-effect Transistor Biosensor
LI Hang,WANG Tong()
Wuxi People’s Hospital Affiliated to Nanjing Medical University,Wuxi 214000,China
Download: HTML   PDF(366KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Silicon nanowire field-effect transistor(SiNW-FET) biosensor has been successfully used to detect many kinds of biomolecules.such as protein,nucleic acids,carbohydrates,etc.Compared with traditional detection methods,it has the advantages that specificity,label-free,real-time and so on.But Debye screening effect of semiconductor device seriously affect the detection sensitivity of SiNW-FET biosensor to biomolecules in blood sampal,especially for protein molecule. And to a great extent,it hindered the practical application of SiNW-FET biosensor. Therefore,effectively overcoming Debye screening effect is the key for the practical application of SiNW-FET biosensor.Now,the main ways of effectively overcome debye screening effect and achieve protein detection in blood sampal are dilution,desalination,protein purification,using biomolecule-permeable polymer layer,tailoring antibody and using aptamer replace antibody.



Key wordsSilicon nanowire      Field-effect transistor      Biosensor      Debye screening effect     
Received: 24 January 2019      Published: 12 November 2019
ZTFLH:  Q81  
Corresponding Authors: Tong WANG     E-mail: aanti@163.com
Cite this article:

LI Hang,WANG Tong. Research Progress on Overcoming Debye Screening Effect of Silicon Nanowire Field-effect Transistor Biosensor. China Biotechnology, 2019, 39(10): 112-116.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20191014     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I10/112

原理 方法
增加德拜长度 稀释法、去盐法、目标蛋白提纯法、应用渗透性生物分子聚合物层法
缩短目标蛋白与
SiNW间距离
抗体裁剪法、适配子替代法
Table 1 The principles and methods of overcoming debye screening effect
[1]   Gao A, Yang X, Tong J , et al. Multiplexed detection of lung cancer biomarkers in patients serum with CMOS-compatible silicon nanowire arrays. Biosens Bioelectron, 2017,91:482-488.
[2]   Cui Y, Wei Q, Park H , et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001,293(5533):1289-1292.
[3]   Li B R, Chen C C, Kumar U R , et al. Advances in nanowire transistors for biological analysis and cellular investigation. Analyst, 2014,139(7):1589-1608.
doi: 10.1039/c3an01861j
[4]   Wang W U, Chen C, Lin K H , et al. Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. Proc Natl Acad Sci USA, 2005,102(9):3208-3212.
[5]   Wang B, Cancilla J C, Torrecilla J S , et al. Artificial sensing intelligence with silicon nanowires for ultraselective detection in the gas phase. Nano Lett, 2014,14(2):933-938.
[6]   Liu R, Chen R, Elthakeb A T , et al. High density individually addressable nanowire arrays record intracellular activity from primary rodent and human stem cell derived neurons. Nano Lett, 2017,17(5):2757-2764.
[7]   Tran D P, Pham T, Wolfrum B , et al. CMOS-compatible silicon nanowire field-effect transistor biosensor: technology development toward commercialization. Materials (Basel), 2018,11(5):785.
[8]   Noor M O, Krull U J . Silicon nanowires as field-effect transducers for biosensor development:a review. Anal Chim Acta, 2014,825:1-25.
[9]   Gao A, Lu N, Dai P , et al. Direct ultrasensitive electrical detection of prostate cancer biomarkers with CMOS-compatible n- and p-type silicon nanowire sensor arrays. Nanoscale, 2014,6(21):13036-13042.
doi: 10.1039/c4nr03210a
[10]   Gao A, Lu N, Wang Y , et al. Robust ultrasensitive tunneling-FET biosensor for point-of-care diagnostics. Sci Rep, 2016,6(1):22554.
[11]   Chang K S, Chen C C, Sheu J T , et al. Detection of an uncharged steroid with a silicon nanowire fieldeffect transistor. Sensors and Actuators B:Chemical, 2009,138(1):148-153.
[12]   Lee M, Palanisamy S, Zhou B H , et al. Ultrasensitive electrical detection of follicle-stimulating hormone using a functionalized silicon nanowire transistor chemosensor. ACS Appl Mater Interfaces, 2018,10(42):36120-36127.
[13]   He J, Zhu J, Gong C , et al. Label-Free direct detection of miRNAs with poly-silicon nanowire biosensors. PLoS One, 2015,10(12):e145160.
[14]   Schutt J, Ibarlucea B, Illing R , et al. Compact nanowire sensors probe microdroplets. Nano Lett, 2016,16(8):4991-5000.
[15]   Anand A, Liu C R, Chou A C , et al. Detection of K(+) efflux from stimulated cortical neurons by an aptamer-modified silicon nanowire field-effect transistor. ACS Sens, 2017,2(1):69-79.
[16]   Chiang P L, Chou T C, Wu T H , et al. Nanowire transistor-based ultrasensitive virus detection with reversible surface functionalization. Chem Asian J, 2012,7(9):2073-2079.
[17]   Tran D P, Winter M A, Wolfrum B , et al. Toward intraoperative detection of disseminated tumor cells in lymph nodes with silicon nanowire field effect transistors. ACS Nano, 2016,10(2):2357-2364.
[18]   Zhang G J, Ning Y . Silicon nanowire biosensor and its applications in disease diagnostics:a review. Anal Chim Acta, 2012,749:1-15.
[19]   Elnathan R, Kwiat M, Pevzner A , et al. Biorecognition layer engineering:overcoming screening limitations of nanowire-based FET devices. Nano Lett, 2012,12(10):5245-5254.
[20]   Huang Y W, Wu C S, Chuang C K , et al. Real-time and label-free detection of the prostate-specific antigen in human serum by a polycrystalline silicon nanowire field-effect transistor biosensor. Anal Chem, 2013,85(16):7912-7918.
[21]   Krivitsky V, Zverzhinetsky M, Patolsky F . Antigen-dissociation from antibody-modified nanotransistor sensor arrays as a direct biomarker detection method in unprocessed biosamples. Nano Lett, 2016,16(10):6272-6281.
[22]   Kim J P, Lee B Y, Hong S , et al. Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments. Anal Biochem, 2008,381(2):193-198.
[23]   Lloret N, Frederiksen R S, Moller T C , et al. Effects of buffer composition and dilution on nanowire field-effect biosensors. Nanotechnology, 2013,24(3):35501.
[24]   Stern E, Vacic A, Rajan N K , et al. Label-free biomarker detection from whole blood. Nat Nanotechnol, 2010,5(2):138-142.
[25]   Krivitsky V, Hsiung L C, Lichtenstein A , et al. Si nanowires forest-based on-chip biomolecular filtering,separation and preconcentration devices:nanowires do it all. Nano Lett, 2012,12(9):4748-4756.
[26]   Gao N, Zhou W, Jiang X , et al. General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors. Nano Lett, 2015,15(3):2143-2148.
[27]   Gao N, Gao T, Yang X , et al. Specific detection of biomolecules in physiological solutions using graphene transistor biosensors. Proc Natl Acad Sci USA, 2016,113(51):14633-14638.
[28]   Binz H K, Pluckthun A . Engineered proteins as specific binding reagents. Curr Opin Biotechnol, 2005,16(4):459-469.
[29]   Ishikawa F N, Chang H K, Curreli M , et al. Label-free,electrical detection of the SARS virus N-protein with nanowire biosensors utilizing antibody mimics as capture probes. ACS Nano, 2009,3(5):1219-1224.
[30]   Maehashi K, Katsura T, Kerman K , et al. Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal Chem, 2007,79(2):782-787.
[1] XU Wen-juan,SONG Dan,CHEN Dan,LONG Hui,CHEN Yu-bao,LONG Feng. Research Progress of Pathogen Detection Technologies Based on CRISPR/CAS Biosensor[J]. China Biotechnology, 2021, 41(8): 67-74.
[2] TANG Meng-tong,WANG Zhao-guan,LI Jiao-jiao,QI Hao. Application of Terminal Deoxynucleotidyl Transferase in Biosensors and Nucleic Acid Synthesis[J]. China Biotechnology, 2021, 41(5): 51-64.
[3] ZHANG Zheng-yan,CHEN Yu,SONG Li-jie,SU Zheng-quan,ZHANG Hai-yan. Advances in the Application of Field Effect Transistor Biosensor in Biomedical Detection[J]. China Biotechnology, 2021, 41(10): 73-88.
[4] HAO Xiao-ting,LIU Jun-jie,DENG Yu-lin,ZHANG Yong-qian. Radiation Biosensor Based on Promoter of SOS Reaction and Oxidative Stress Reaction[J]. China Biotechnology, 2020, 40(7): 30-40.
[5] CHENG Ping,ZHANG Yang-zi,MA Xuan,CHEN Xu,ZHU Bao-qing,XU Wen-tao. Properties and Applications of Stimuli-Responsive DNA Hydrogels[J]. China Biotechnology, 2020, 40(3): 132-143.
[6] YI Yu, WANG Min-jun, MEI Jian-feng, CHEN Jian-shu, ZHANG Yan-lu, YING Guo-qing. Construction and Characterization of Electrochemical Biosensor based on Endotoxin Aptameer[J]. China Biotechnology, 2017, 37(8): 46-50.
[7] WEN Guo-xia, HUANG Zi-hao, TAN Jun-jie, KAN Nai-peng, LING Jing-yi, ZHANG Xia, LIU Gang, CHEN Hui-peng. Construction of XylR-Pugene Lines in Escherichia coli to Detect 2,4,6-trinitrotoluene[J]. China Biotechnology, 2017, 37(7): 105-114.
[8] WANG Ping, MAO Hong-ju. The Application of Nanomaterials in Biomedical Detection[J]. China Biotechnology, 2011, 31(9): 88-95.
[9] DENG Han-chao, YIN Chang-cheng, LIU Guo-zhen, LIN Jian-rong, DENG Ping-jian. Progress in Nucleic Acid Detection Techniques for Genetically Modified Organisms[J]. China Biotechnology, 2011, 31(01): 86-95.
[10] ZHOU Li-hong, CHEN Zi-qiang, HUANG Guo-you, ZHAI Xiao, CHEN Yong-mei, XU Fong, LU Tian-jian. The Application of Cell Bioprinting[J]. China Biotechnology, 2010, 30(12): 95-104.
[11] ZHENG Hui, LI Qiu-Shun, GAO An-Heng, ZHANG Li-Qun, MA Yao-Hong, SHI Jian-Guo. Key Technologies and Progress of Amperometric Biosensors Based on Dehydrogenases[J]. China Biotechnology, 2010, 30(09): 118-123.
[12] Hao Jiang Hongmin Zhou Leike Li Linjing Bai Cunxian Song Zhaofeng Luo. Methods for Regeneration of Five Kinds of SPR Sensor Chips and Their Applications[J]. China Biotechnology, 2009, 29(01): 44-49.
[13] 尹娟 YIN Juan. Research Progress on Determination of Cellulase Activity and Gene Expression by Biosensor[J]. China Biotechnology, 2009, 29(01): 86-92.
[14] . A Promising Biological Detection Technology-Biosensor[J]. China Biotechnology, 2008, 28(5): 141-147.