Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (7): 60-76    DOI: 10.13523/j.cb.2212025
    
Application of Computational Simulation in Protein Assembly
Ding-yuan LU1,Qi-bin WANG1,Hu LIU1,**(),Chun LI1,2,**()
1 School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
2 Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
Download: HTML   PDF(3158KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Protein assembly technology has developed rapidly and is widely used in biocatalysis, biosensors, and drug release. It has become an important part of bioengineering. Due to the complexity of protein-protein interactions and insufficient understanding of protein folding and molecular recognition, designing complex protein assemblies is very challenging. With the continuous development of computer technology and molecular simulation, researchers have gradually realized the precise design of protein assemblies with atomic-and molecular-level accuracy, predicted the structure of protein assemblies, and further designed catalytic sites on protein assemblies to obtain a.pngicial biocatalysis of assembled enzymes. In recent years, a.pngicial intelligence technologies such as machine learning have also been applied to protein assembly design, contributing to the development of protein assembly research. Here, the research progress of computational simulation technology in design of protein assembly, prediction of assembly structure, and catalytic site design and its application in new enzyme design, drug release, biosensor and other areas are reviewed, in order to guide the design and optimization of protein assembly for more different application fields through basic theoretical research.



Key wordsComputational simulation      Protein assembly      Prediction of assembly structure      Catalytic site design     
Received: 18 December 2022      Published: 03 August 2023
ZTFLH:  Q816  
Cite this article:

Ding-yuan LU, Qi-bin WANG, Hu LIU, Chun LI. Application of Computational Simulation in Protein Assembly. China Biotechnology, 2023, 43(7): 60-76.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2212025     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I7/60

Fig.1 Application of computational simulation in natural protein module assembly (a) Two-component assembly of 120 subunits [5] (b) Schematic diagram of protein nanostructures formed by Ni2+ -His coordination[10] (c) Trimer esterase used in the design (the C-terminus of which is represented by a red sphere) and the structure of a tetrameric coiled coil[9]
De novo building blocks Principles or algorithms Assembly properties References
Homotetrameric bundle Thiol-maleimide“click”reaction 1D, high stability, controllable size and spatial display [16]
Single chain homodimeric bundle Rosetta HBNet algorithm Pseudosymmetric 2D assemblies based on a C12 symmetric layer group [17]
Helical hairpin monomer Rosetta Homo-oligomers with central hydrogen-bond networks [14]
De novo repeat protein Rosetta Homotrimeric metalloprotein with a trisbipyridyl core [18]
De novo repeat protein CoCoPOD Zn2+-dependent CCPO cages [19]
α-Helical repeat protein Rosetta Homo-oligomeric protein complexes with cyclic symmetry [15]
WA20-foldon fusion protein Coot modelling Highly symmetric hexamer, dodecamer and octadecamer [20]
Homotrimeric parallel coiled-coil Probabilistic protein design 3D, macroscopic protein crystals [21]
Heterodimeric and homotrimeric coiled-coil bundles MD simulation Hexagonal networks, cage-like particles [22]
“Sticky ended”dimeric coiled coil MD simulation MAKECCSC modelling 1D gigadalton.pngf peptide fibers [23]
De novo α-helics CCBuilder Water-soluble parallel α-helical barrels [24]
De novo αβ-proteins Rosetta C2~C5 cyclic oligomer [25]
De novo βαβ fold Rosetta Novel topology, self-assemble into a fibril [26]
De novo αβ-proteins ProteinMPNN C3~C33 cyclic oligomer [27]
Table 1 Applications of computational method in designing de novo building block and its assembly
Fig.2 Application of computational simulation in de novo protein module assembly (a) The homologous dimers designed from scratch are connected into a single chain and symmetrically assembled in the C12 layer group with three parameters a, b and θ[17] (b) The unnatural amino acid bipyridine-alanine (Bpy-Ala) and Fe2+ are assembled by metal coordination[18] (c) Schematic representation of the assembly of the WA20-foldon fusion protein[20] (d) The alpha-β-proteins designed from scratch were bused into a ring assembly conformation[25]
Fig.3 Application of computational simulation in predicting protein assembly based on structural information (a) SIKE dimer model predicted by ZDOCK and ClusPro[57] (b) Schematic diagram of wheel deployment[22] (c) Curvature observed after 5 ns MD simulation[22]
Scaffolds Assembly
strategies
Active
centers
Locations Catalytic
functions
References
Heptameric α-
helical barrel
Hydrophobic interaction Cys-His-Glu triads Lumen of α-helical barrel p-Nitrophenyl acetate hydrolysis [63]
TMV coat protein
nanodisks or nanotubes
Natural protein
aggregation
Selenocysteine Outer surface of nanodisks and nanotubes Catalyze the reduction of H2O2 by glutathione [64]
LmrR dimer Cysteine conjugation Cu2+ Hydrophobic pore of dimer center Catalyze Diels-Alder reaction [65]
Heterotetrameric helical bundle Noncovalent interaction Diiron(II/III) ions Cavity of helical bundle Oxidation of 4-aminophenol [66]
Cytochrome cb562
tetramer
Metal coordination,
disulfide bond
Zn2+, His, Glu Interface of monomers Ampicillin hydrolysis [67]
MID1-zinc homodimer Metal coordination Zn2+, His, tartrate A cleft of dimer interface Hydrolysis of 4-nitrophenyl acetate and 4-nitrophenyl phosphate [68]
Homotetrameric coiled coils Noncovalent interaction Cu2+, His Lumen of coiled coils Reduction of nitrite [69]
Parallel coiled-
coil homotetramers
Noncovalent interaction Cys, Lys, His Interface between
helical subunits
Intermodular aminoacyl transfer [70]
Heterodimeric coiled-coil Electrostatic Cys Interface of heterodimer Ligate two short peptide
fragments
[71]
Table 2 Introduction of catalytically active site in protein assembly
Fig.4 Application of computational simulation in designing specific modified catalytic sites (a) GPx mimics Se-TMVcp142Cys149Arg assembled into an a.pngicial nanozyme[64] (b) De novo C45 protein calculation model and the peroxidase catalyzed reaction[72]
Fig.5 Application of computational simulation in designing catalytic sites of different metal ions (a) The CuII complex is attached to the dimer interface of the protein scaffold, and the ligand is attached to the dimer interface[65] (b) Subunit composition of DFtetA2B2 and DFtet AaAbB2[66] (c) The crystal structure of Zn8: AB34[67]
Fig.6 Application of computational simulation in studying the catalytic mechanism of assembled enzyme (a) A nick (red grid) on the MID1-Zn interface and an open zinc coordination sites[68] (b) Model of 4AP bound to DFtet A2B2. The carbons of thephenol are in cyan[66] (c) DhaA115 dimer interface design[77]
[1]   Luo Q, Hou C X, Bai Y S, et al. Protein assembly: versatile approaches to construct highly ordered nanostructures. Chemical Reviews, 2016, 116(22): 13571-13632.
pmid: 27587089
[2]   McManus J J, Charbonneau P, Zaccarelli E, et al. The physics of protein self-assembly. Current Opinion in Colloid & Interface Science, 2016, 22: 73-79.
doi: 10.1016/j.cocis.2016.02.011
[3]   King N P, Sheffler W, Sawaya M R, et al. Computational design of self-assembling protein nanomaterials with atomic level accuracy. Science, 2012, 336(6085): 1171-1174.
doi: 10.1126/science.1219364 pmid: 22654060
[4]   Hsia Y, Bale J B, Gonen S, et al. Design of a hyperstable 60-subunit protein icosahedron. Nature, 2016, 535(7610): 136-139.
doi: 10.1038/nature18010
[5]   Bale J B, Gonen S, Liu Y X, et al. Accurate design of megadalton-scale two-component icosahedral protein complexes. Science, 2016, 353(6297): 389-394.
doi: 10.1126/science.aaf8818 pmid: 27463675
[6]   Wargacki A J, Wörner T P, van de Waterbeemd M, et al. Complete and cooperative in vitro assembly of computationally designed self-assembling protein nanomaterials. Nature Communications, 2021, 12(1): 1-14.
doi: 10.1038/s41467-020-20314-w
[7]   Chevalier A, Silva D A, Rocklin G J, et al. Massively parallel de novo protein design for targeted therapeutics. Nature, 2017, 550(7674): 74-79.
doi: 10.1038/nature23912
[8]   Karanicolas J, Corn J E, Chen I, et al. A de novo protein binding pair by computational design and directed evolution. Molecular Cell, 2011, 42(2): 250-260.
doi: 10.1016/j.molcel.2011.03.010 pmid: 21458342
[9]   Sciore A, Su M, Koldewey P, et al. Flexible, symmetry-directed approach to assembling protein cages. Proceedings of the National Academy of Sciences, 2016, 113(31): 8681-8686.
[10]   Bai Y S, Luo Q, Zhang W, et al. Highly ordered protein nanorings designed by accurate control of glutathione S-transferase self-assembly. Journal of the American Chemical Society, 2013, 135(30): 10966-10969.
doi: 10.1021/ja405519s pmid: 23865524
[11]   Ben-Sasson A J, Watson J L, Sheffler W, et al. Design of biologically active binary protein 2D materials. Nature, 2021, 589(7842): 468-473.
doi: 10.1038/s41586-020-03120-8
[12]   Huang P, Oberdorfer G, Xu C, et al. High thermodynamic stability of parametrically designed helical bundles. Science, 2014, 346(6208): 481-485.
doi: 10.1126/science.1257481
[13]   Gonen S, DiMaio F, Gonen T, et al. Design of ordered two-dimensional arrays mediated by noncovalent protein-protein interfaces. Science, 2015, 348(6241): 1365-1368.
doi: 10.1126/science.aaa9897 pmid: 26089516
[14]   Boyken S E, Chen Z, Groves B, et al. De novo design of protein homo-oligomers with modular hydrogen-bond network-mediated specificity. Science, 2016, 353(6302): 680-687.
[15]   Fallas J A, Ueda G, Sheffler W, et al. Computational design of self-assembling cyclic protein homo-oligomers. Nature Chemistry, 2017, 9(4): 353-360.
doi: 10.1038/nchem.2673 pmid: 28338692
[16]   Wu D D, Sinha N, Lee J, et al. Polymers with controlled assembly and rigidity made with click-functional peptide bundles. Nature, 2019, 574(7780): 658-662.
doi: 10.1038/s41586-019-1683-4
[17]   Chen Z B, Johnson M C, Chen J J, et al. Self-assembling 2D arrays with de novo protein building blocks. Journal of the American Chemical Society, 2019, 141(22): 8891-8895.
doi: 10.1021/jacs.9b01978
[18]   Mills J H, Sheffler W, Ener M E, et al. Computational design of a homotrimeric metalloprotein with a trisbipyridyl core. Proceedings of the National Academy of Sciences, 2016, 113(52): 15012-15017.
[19]   Aupič J, Lapenta F, Strmšek Ž, et al. Metal ion-regulated assembly of designed modular protein cages. Science Advances, 2022, 8(24): eabm8243.
doi: 10.1126/sciadv.abm8243
[20]   Kobayashi N, Yanase K, Sato T, et al. Self-assembling nano-architectures created from a protein nano-building block using an intermolecularly folded dimeric de novo protein. Journal of the American Chemical Society, 2015, 137(35): 11285-11293.
doi: 10.1021/jacs.5b03593 pmid: 26120734
[21]   Lanci C J, MacDermaid C M, Kang S G, et al. Computational design of a protein crystal. Proceedings of the National Academy of Sciences, 2012, 109(19): 7304-7309.
[22]   Fletcher J M, Harniman R L, Barnes F R H, et al. Self-assembling cages from coiled-coil peptide modules. Science, 2013, 340(6132): 595-599.
doi: 10.1126/science.1233936 pmid: 23579496
[23]   Sharp T H, Bruning M, Mantell J, et al. Cryo-transmission electron microscopy structure of a gigadalton peptide fiber of de novo design. Proceedings of the National Academy of Sciences, 2012, 109(33): 13266-13271.
[24]   Thomson A R, Wood C W, Burton A J, et al. Computational design of water-soluble α-helical barrels. Science, 2014, 346(6208): 485-488.
doi: 10.1126/science.1257452 pmid: 25342807
[25]   Lin Y R, Koga N, Vorobiev S M, et al. Cyclic oligomer design with de novo αβ-proteins. Protein Science, 2017, 26(11): 2187-2194.
doi: 10.1002/pro.3270
[26]   Kaltofen S, Li C G, Huang P S, et al. Computational de novo design of a self-assembling peptide with predefined structure. Journal of Molecular Biology, 2015, 427(2): 550-562.
doi: 10.1016/j.jmb.2014.12.002 pmid: 25498388
[27]   Wicky B I M, Milles L F, Courbet A, et al. Hallucinating symmetric protein assemblies. Science, 2022, 378(6615): 56-61.
doi: 10.1126/science.add1964 pmid: 36108048
[28]   Božič Abram S, Gradišar H, Aupič J, et al. Triangular in vivo self-assembling coiled-coil protein origami. ACS Chemical Biology, 2021, 16(2): 310-315.
doi: 10.1021/acschembio.0c00812
[29]   Guharoy M, Chakrabarti P. Secondary structure based analysis and classification of biological interfaces: ide.pngication of binding m.pngs in protein-protein interactions. Bioinformatics, 2007, 23(15): 1909-1918.
pmid: 17510165
[30]   Negahdaripour M, Golkar N, Hajighahramani N, et al. Harnessing self-assembled peptide nanoparticles in epitope vaccine design. Biotechnology Advances, 2017, 35(5): 575-596.
doi: S0734-9750(17)30054-X pmid: 28522213
[31]   Pierce B G, Wiehe K, Hwang H, et al. ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics, 2014, 30(12): 1771-1773.
doi: 10.1093/bioinformatics/btu097 pmid: 24532726
[32]   Zambrano R, Jamroz M, Szczasiuk A, et al. AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures. Nucleic Acids Research, 2015, 43(W1): W306-W313.
doi: 10.1093/nar/gkv359
[33]   Tsaban T, Varga J K, Avraham O, et al. Harnessing protein folding neural networks for peptide-protein docking. Nature Communications, 2022, 13: 176.
doi: 10.1038/s41467-021-27838-9 pmid: 35013344
[34]   Wang J, Lisanza S, Juergens D, et al. Scaffolding protein functional sites using deep learning. Science, 2022, 377(6604): 387-394.
doi: 10.1126/science.abn2100 pmid: 35862514
[35]   Humphreys I R, Pei J M, Baek M, et al. Computed structures of core eukaryotic protein complexes. Science, 2021, 374(6573): eabm4805.
doi: 10.1126/science.abm4805
[36]   Senior A W, Evans R, Jumper J, et al. Improved protein structure prediction using potentials from deep learning. Nature, 2020, 577(7792): 706-710.
doi: 10.1038/s41586-019-1923-7
[37]   Norn C, Wicky B I M, Juergens D, et al. Protein sequence design by conformational landscape optimization. Proceedings of the National Academy of Sciences, 2021, 118(11): e2017228118.
[38]   Dauparas J, Anishchenko I, Bennett N, et al. Robust deep learning-based protein sequence design using ProteinMPNN. Science, 2022, 378(6615): 49-56.
doi: 10.1126/science.add2187 pmid: 36108050
[39]   Madani A, Krause B, Greene E R, et al. Large language models generate functional protein sequences across diverse families. Nature Biotechnology, 2023. DOI: 10.1038/s41587-022-01618-2.
doi: 10.1038/s41587-022-01618-2
[40]   Ferruz N, Schmidt S, Höcker B. ProtGPT2 is a deep unsupervised language model for protein design. Nature Communications, 2022, 13: 4348.
doi: 10.1038/s41467-022-32007-7 pmid: 35896542
[41]   Ruffolo J A, Sulam J, Gray J J. Antibody structure prediction using interpretable deep learning. Patterns, 2022, 3(2): 100406.
doi: 10.1016/j.patter.2021.100406
[42]   Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873): 583-589.
doi: 10.1038/s41586-021-03819-2
[43]   Baek M, DiMaio F, Anishchenko I, et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science, 2021, 373(6557): 871-876.
doi: 10.1126/science.abj8754 pmid: 34282049
[44]   Nealon J O, Philomina L S, McGuffin L J. Predictive and experimental approaches for elucidating protein-protein interactions and quaternary structures. International Journal of Molecular Sciences, 2017, 18(12): 2623.
doi: 10.3390/ijms18122623
[45]   Leaver-Fay A, Tyka M, Lewis S M, et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods in Enzymology, 2011, 487: 545-574.
doi: 10.1016/B978-0-12-381270-4.00019-6 pmid: 21187238
[46]   Das R, André I, Shen Y, et al. Simultaneous prediction of protein folding and docking at high resolution. Proceedings of the National Academy of Sciences, 2009, 106(45): 18978-18983.
[47]   André I, Bjelic S. Computational assessment of folding energy landscapes in heterodimeric coiled coils. Proteins: Structure, Function, and Bioinformatics, 2018, 86(7): 790-801.
doi: 10.1002/prot.v86.7
[48]   Sønderby P, Rinnan Å, Madsen J J, et al. Small-angle X-ray scattering data in combination with RosettaDock improves the docking energy landscape. Journal of Chemical Information and Modeling, 2017, 57(10): 2463-2475.
doi: 10.1021/acs.jcim.6b00789 pmid: 28853875
[49]   Woolfson D N, Alber T. Predicting oligomerization states of coiled coils. Protein Science, 1995, 4(8): 1596-1607.
pmid: 8520486
[50]   Mahrenholz C C, Abfalter I G, Bodenhofer U, et al. Complex networks govern coiled-coil oligomerization-predicting and profiling by means of a machine learning approach. Molecular & Cellular Proteomics, 2011, 10(5): M110.004994.
[51]   Trigg J, Gutwin K, Keating A E, et al. Multicoil2: predicting coiled coils and their oligomerization states from sequence in the twilight zone. PLoS One, 2011, 6(8): e23519.
doi: 10.1371/journal.pone.0023519
[52]   Rackham O J L, Madera M, Armstrong C T, et al. The evolution and structure prediction of coiled coils across all genomes. Journal of Molecular Biology, 2010, 403(3): 480-493.
doi: 10.1016/j.jmb.2010.08.032 pmid: 20813113
[53]   Vincent T L, Green P J, Woolfson D N. LOGICOIL: multi-state prediction of coiled-coil oligomeric state. Bioinformatics, 2013, 29(1): 69-76.
doi: 10.1093/bioinformatics/bts648 pmid: 23129295
[54]   Roberts V A, Thompson E E, Pique M E, et al. DOT2: macromolecular docking with improved biophysical models. Journal of Computational Chemistry, 2013, 34(20): 1743-1758.
doi: 10.1002/jcc.23304 pmid: 23695987
[55]   Kastritis P L, Rodrigues J P G L M, Bonvin A M J J. HADDOCK2P2I: a biophysical model for predicting the binding affinity of protein-protein interaction inhibitors. Journal of Chemical Information and Modeling, 2014, 54(3): 826-836.
doi: 10.1021/ci4005332
[56]   Kozakov D, Hall D R, Xia B, et al. The ClusPro web server for protein-protein docking. Nature Protocols, 2017, 12(2): 255-278.
doi: 10.1038/nprot.2016.169 pmid: 28079879
[57]   Machek M L, Sonnenschein H A, Graham S K I, et al. Predicting and validating a model of suppressor of IKKepsilon through biophysical characterization. Protein Science, 2019, 28(8): 1423-1436.
doi: 10.1002/pro.3640 pmid: 31074891
[58]   Baek M, Park T, Heo L, et al. GalaxyHomomer: a web server for protein homo-oligomer structure prediction from a monomer sequence or structure. Nucleic Acids Research, 2017, 45(W1): W320-W324.
doi: 10.1093/nar/gkx246
[59]   Kiss G, Çelebi-Ölçüm N, Moretti R, et al. Computational enzyme design. Angewandte Chemie International Edition, 2013, 52(22): 5700-5725.
[60]   Röthlisberger D, Khersonsky O, Wollacott A M, et al. Kemp elimination catalysts by computational enzyme design. Nature, 2008, 453(7192): 190-195.
doi: 10.1038/nature06879
[61]   Jiang L, Althoff E A, Clemente F R, et al. De novo computational design of retro-aldol enzymes. Science, 2008, 319(5868): 1387-1391.
doi: 10.1126/science.1152692 pmid: 18323453
[62]   Siegel J B, Zanghellini A, Lovick H M, et al. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science, 2010, 329(5989): 309-313.
doi: 10.1126/science.1190239 pmid: 20647463
[63]   Burton A J, Thomson A R, Dawson W M, et al. Installing hydrolytic activity into a completely de novo protein framework. Nature Chemistry, 2016, 8(9): 837-844.
doi: 10.1038/nchem.2555
[64]   Hou C X, Luo Q, Liu J L, et al. Construction of GPx active centers on natural protein nanodisk/nanotube: a new way to develop a.pngicial nanoenzyme. ACS Nano, 2012, 6(10): 8692-8701.
doi: 10.1021/nn302270b
[65]   Bos J, Fusetti F, Driessen A J M, et al. Enantioselective a.pngicial metalloenzymes by creation of a novel active site at the protein dimer interface. Angewandte Chemie International Edition, 2012, 51(30): 7472-7475.
[66]   Kaplan J, DeGrado W F. De novo design of catalytic proteins. Proceedings of the National Academy of Sciences, 2004, 101(32): 11566-11570.
[67]   Song W J, Tezcan F A. A designed supramolecular protein assembly with in vivo enzymatic activity. Science, 2014, 346 (6216): 1525-1528.
doi: 10.1126/science.1259680
[68]   Der B S, Edwards D R, Kuhlman B. Catalysis by a de novo zinc-mediated protein interface: implications for natural enzyme evolution and rational enzyme engineering. Biochemistry, 2012, 51(18): 3933-3940.
doi: 10.1021/bi201881p
[69]   Tegoni M, Yu F T, Bersellini M, et al. Designing a functional type 2 copper center that has nitrite reductase activity within α-helical coiled coils. Proceedings of the National Academy of Sciences, 2012, 109(52): 21234-21239.
[70]   Wilcoxen K M, Leman L J, Weinberger D A, et al. Biomimetic catalysis of intermodular aminoacyl transfer. Journal of the American Chemical Society, 2007, 129(4): 748-749.
pmid: 17243796
[71]   Kennan A J, Haridas V, Severin K, et al. A de novo designed peptide ligase: a mechanistic investigation. Journal of the American Chemical Society, 2001, 123(9): 1797-1803.
pmid: 11456796
[72]   Watkins D W, Jenkins J M X, Grayson K J, et al. Construction and in vivo assembly of a catalytically proficient and hyperthermostable de novo enzyme. Nature Communications, 2017, 8(1): 1-9.
doi: 10.1038/s41467-016-0009-6
[73]   Farid T A, Kodali G, Solomon L A, et al. Elementary tetrahelical protein design for diverse oxidoreductase functions. Nature Chemical Biology, 2013, 9(12): 826-833.
doi: 10.1038/nchembio.1362 pmid: 24121554
[74]   Smith A J T, Müller R, Toscano M D, et al. Structural reorganization and preorganization in enzyme active sites: comparisons of experimental and theoretically ideal active site geometries in the multistep serine esterase reaction cycle. Journal of the American Chemical Society, 2008, 130(46): 15361-15373.
doi: 10.1021/ja803213p pmid: 18939839
[75]   Clarke D E, Noguchi H, Gryspeerdt J L A G, et al. A.pngicial β-propeller protein-based hydrolases. Chemical Communications, 2019, 55(60): 8880-8883.
doi: 10.1039/c9cc04388h pmid: 31321399
[76]   Reig A J, Pires M M, Snyder R A, et al. Alteration of the oxygen-dependent reactivity of de novo Due Ferri proteins. Nature Chemistry, 2012, 4(11): 900-906.
doi: 10.1038/nchem.1454
[77]   Markova K, Kunka A, Chmelova K, et al. Computational enzyme stabilization can affect folding energy landscapes and lead to catalytically enhanced domain-swapped dimers. ACS Catalysis, 2021, 11(21): 12864-12885.
doi: 10.1021/acscatal.1c03343
[78]   Abdelhamid M A A, Ki M R, Ali Abd El-Hafeez A, et al. Tailored functionalized protein nanocarriers for cancer therapy: recent developments and prospects. Pharmaceutics, 2023, 15(1): 168.
doi: 10.3390/pharmaceutics15010168
[79]   Sasso L, Suei S, Domigan L, et al. Versatile multi-functionalization of protein nanofibrils for biosensor applications. Nanoscale, 2014, 6(3): 1629-1634.
doi: 10.1039/c3nr05752f pmid: 24337159
[80]   Blacklock K M, Yachnin B J, Woolley G A, et al. Computational design of a photocontrolled cytosine deaminase. Journal of the American Chemical Society, 2018, 140(1): 14-17.
doi: 10.1021/jacs.7b08709 pmid: 29251923
[81]   Gainza-Cirauqui P, Correia B E. Computational protein design: the next generation tool to expand synthetic biology applications. Current Opinion in Biotechnology, 2018, 52: 145-152.
doi: S0958-1669(17)30235-5 pmid: 29729544
[82]   Morris C, Glennie S J, Lam H S, et al. A modular vaccine platform combining self-assembled peptide cages and immunogenic peptides. Advanced Functional Materials, 2019, 29(8): 1807357.
doi: 10.1002/adfm.v29.8
[83]   Ljubetič A, Lapenta F, Gradišar H, et al. Design of coiled-coil protein-origami cages that self-assemble in vitro and in vivo. Nature Biotechnology, 2019, 35(11): 1094-1101.
doi: 10.1038/nbt.3994
[1] Ying XU, Xue WANG, Qian-qian WANG, Yun-ping ZHU, Chen-xi JIA. Analysis of Protein Methylation Modification of Mouse Pituitary Tumor Cells after Exposure to Cold[J]. China Biotechnology, 2023, 43(7): 12-22.
[2] Huan MENG, Yi-fan SU, Sa WANG, Shu-wen ZHANG, Yong-xiang ZHENG, Rong YU, Chun ZHANG. Prokaryotic Soluble Expression, Purification, Characterization and Preliminary Activity Evaluation of Recombinant Albumin Binding Peptide Fused with Human Interleukin-11[J]. China Biotechnology, 2023, 43(7): 44-52.
[3] Hong-sheng FENG,Hang JIN,Yong-yu GAO,Yu-han XIAN,Hai-yang LI,Si-yu YANG,Ai-ming JIA,Feng-shan GAO. Application of Immunoinformatics in Epitope Vaccine Development[J]. China Biotechnology, 2023, 43(7): 88-100.
[4] LIU Shao-jin, DOU Shu-zhen, WANG Jun-shu, WU Hai-ming, ZOU Hui. Market Analysis and Countermeasures for Targeted Protein Degradation Drugs[J]. China Biotechnology, 2023, 43(2/3): 190-200.
[5] JIN Qian, SHI Meng, LIU Zhan-biao, ZHANG Yi, ZHU Si-qing, SHI Jing-jing, ZONG Xing-xing, CHEN Xue-jun, LI Li-qin. Analysis of Differentially Expressed Proteins in the Cervical Spinal Cord of Guinea Pigs Subacutely Exposed to Soman[J]. China Biotechnology, 2023, 43(2/3): 64-74.
[6] WANG Yu-hang, CHEN Xue-ming, LIU Su-sheng, RUAN Zhi-jun, ZHANG Min, SONG Chun-li, YIN Feng, LI Zi-gang. A Solid-phase Synthesis Method and Purification of Polypeptides[J]. China Biotechnology, 2023, 43(1): 35-41.
[7] Kun WANG,Fu-yun ZHAO,Yun-fei XU,Xiao-feng YUAN,Wei-chun ZHAO. Preparation of Monoclonal Antibody Against Fusarium solani and Development of Its Colloidal Gold Immunochromatographic Strip[J]. China Biotechnology, 2022, 42(7): 54-61.
[8] BAO Yi-kai,HONG Hao-fei,SHI Jie,ZHOU Zhi-fang,WU Zhi-meng. Development and Biological Activity Analysis of PSMA Specific Mutivalent Nanobodies[J]. China Biotechnology, 2022, 42(5): 37-45.
[9] CHEN Yang, LIU Tong, ZHANG Jia-qi, LIAO Hua-xin, LIN Yue-zhi, WANG Xiao-jun, WANG Ya-yu. Screening of Monoclonal Antibodies Targeting the Equine IgG1 Based on Single B Cell Antibodies Gene Amplification Technology[J]. China Biotechnology, 2022, 42(4): 17-23.
[10] LI Kai-tong, LIU Jin-qing, CAI Wang-wei, XIAO Man, SHEN Bei-fen, WANG Jing, FENG Jian-nan. Advances of Therapeutic Monoclonal Antibodies Targeting Human Interleukin-6 Protein[J]. China Biotechnology, 2022, 42(4): 58-67.
[11] ZHANG Hui,CHEN Hua-ning,KUDELAIDI Kuerban,WANG Song-na,LIU Jia-yang,ZHAO Zhen,YE Li. The Role of Wnt/β-catenin Signaling Pathway in Carcinogenesis and Immunotherapy[J]. China Biotechnology, 2022, 42(1/2): 104-111.
[12] DENG Rui,ZENG Jia-li,LU Xue-mei. Screening and Structure-activity Relationship Analysis of Anti-tumor Derived Peptides Based on Musca domestica cecropin[J]. China Biotechnology, 2021, 41(11): 14-22.
[13] GUO Fang,ZHANG Liang,FENG Xu-dong,LI Chun. Plant-derived UDP-glycosyltransferase and Its Molecular Modification[J]. China Biotechnology, 2021, 41(9): 78-91.
[14] LI Jia-xin,ZHANG Zheng,LIU He,YANG Qing,LV Cheng-zhi,YANG Jun. Preparation and Drug Release Properties of Keratin-loaded Nanoparticles[J]. China Biotechnology, 2021, 41(8): 8-16.
[15] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.