Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (4): 58-67    DOI: 10.13523/j.cb.2111018
    
Advances of Therapeutic Monoclonal Antibodies Targeting Human Interleukin-6 Protein
LI Kai-tong1,LIU Jin-qing2,CAI Wang-wei2,XIAO Man2,SHEN Bei-fen1,WANG Jing1,***(),FENG Jian-nan1,***()
1 State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
2 School of Basic Medicine, Hainan Medical College, Haikou 570102, China
Download: HTML   PDF(1700KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Interleukin-6 (IL-6) is a pleiotropic cytokine, which participates in many physiological and pathological functions. Studies have shown that IL-6 first forms a heterohexameric complex with its own receptors (IL-6R, gp130), which further activate downstream signal transduction pathways, and finally exerts biological functions. However, abnormal activation and dysfunction of IL-6 signaling pathway are closely related to a variety of diseases, such as autoimmune diseases, chronic inflammation, and malignant tumors. In addition, the abnormal expression of IL-6 also plays an important role in COVID-19’s cytokine storm syndrome (CSS). In general, treatments that block key molecules in the IL-6 signaling pathway can be used for IL-6-related diseases. Different from blocking shared receptor molecules such as IL-6R or gp130, therapeutic monoclonal antibodies that block IL-6 protein are more specific. In clinical research, some antibodies targeting IL-6 show their unique therapeutic characteristics and beneficial effects. At present, only one monoclonal antibody drug targeting IL-6 protein has been approved by the US FDA for marketing, and more than 8 therapeutic monoclonal antibodies are in the clinical research. This article focuses on a brief review of therapeutic monoclonal antibodies targeting human IL-6 protein around world and their clinical applications.



Key wordsIL-6      IL-6/IL-6R signal pathway      Monoclonal antibody      Epitope      Clinical application     
Received: 06 November 2021      Published: 05 May 2022
ZTFLH:  Q816  
Corresponding Authors: Jing WANG,Jian-nan FENG     E-mail: Jingw_biomed@163.com;fengjiannan1970@qq.com
Cite this article:

LI Kai-tong, LIU Jin-qing, CAI Wang-wei, XIAO Man, SHEN Bei-fen, WANG Jing, FENG Jian-nan. Advances of Therapeutic Monoclonal Antibodies Targeting Human Interleukin-6 Protein. China Biotechnology, 2022, 42(4): 58-67.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2111018     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I4/58

Fig.1 Schematic of IL-6 signal transduction pathways and therapeutic monoclonal antibodies targeting IL-6 protein
英文名称
(代号)
中文
名称
研制公司 研发
国家
人源化
程度
适应证与临床进展 参考文献
Siltuximab
(CNTO 328)
司妥昔
单抗
Centocor/
Johnson &
Johnson
美国 人鼠嵌合单
克隆抗体
HIV和HHV-8阴性的多中心性卡斯尔曼病病(2014 年FDA/EMA批准; NMPA上市许可申请,并纳入优先审评);复发/难治性多发性骨髓瘤(II期);冒烟型多发性骨髓瘤(SMM)(II期);COVID-19(III期);精神分裂症辅助治疗(I期);转移性胰腺癌(Ib/II) [2,48-51]
Sirukumab
(CNTO 136)
西鲁库
单抗
Johnson &
Johnson/GSK
美国/
英国
全人源单
克隆抗体
一种或多种DMARD 应答不足或不耐受的中重度活动性RA成人患者,单药或与非生物 DMARD联合治疗(2017年FDA驳回BLA);严重抑郁症(II期);COVID-19(II期) [1,48-49]
Clazakizumab
(BMS-945429,
ALD518)
克拉扎珠
单抗
Alder/ BMS 美国 人源化单
克隆抗体
肾移植患者的慢性活性抗体介导的排斥反应(III期);中度至重度RA(IIB期);COVID-19(II期) [2,52]
Olokizumab 奥洛吉
珠单抗
UCB Pharma/
R-Pharm
比利时/
俄罗斯
人源化单克
隆抗体
(大鼠来源)
对甲氨蝶呤反应不足的RA(III期);对甲氨蝶呤反应不足的RA (与阿达木单抗比较,III期);TNF-α抑制剂反应不足的RA(III期);COVID-19(III期);2020年俄罗斯上市 [53-56]
MEDI5117
(WBP216)
N/A 药明
利康
中国 全人源单
克隆抗体
2016.12 NMPA IND;RA(I期) N/A
GB224 杰瑞
单抗
嘉和生物
(Genor
Biopharma)
中国 N/A 2016.12 NMPA IND; RA(I期) N/A
Ziltivekimab 泽韦奇
单抗
Novo Nordisk 丹麦 全人源单
克隆抗体
心血管疾病慢性肾病炎症患者(III期);晚期慢性肾病患者炎症(II期);2021.11 NMPA IND [57]
PF-04236921 N/A Pfizer 美国 全人源单
克隆抗体
克罗恩病(II期);广泛性红斑狼疮(II期);RA(I期) [58]
FB704A N/A Fountain/
Oneness
中国
台湾
全人源单
克隆抗体
严重哮喘(II期);RA(I期) N/A
EBI-031 N/A Eleven
Biotherapeutics/
Roche
美国/瑞士 人源单克
隆抗体
糖尿病黄斑水肿(I期撤回) [2]
Table 1 Therapeutic monoclonal antibodies targeting IL-6 protein and their clinical progresses
[1]   Bartoli F, Bae S, Cometi L, et al. Sirukumab for the treatment of rheumatoid arthritis: update on sirukumab, 2018. Expert Review of Clinical Immunology, 2018, 14(7): 539-547.
doi: 10.1080/1744666X.2018.1487291
[2]   Garbers C, Heink S, Korn T, et al. Interleukin-6: designing specific therapeutics for a complex cytokine. Nature Reviews Drug Discovery, 2018, 17 (6): 395-412.
doi: 10.1038/nrd.2018.45
[3]   Wu Z Y, McGoogan J M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese center for disease control and prevention. JAMA, 2020, 323(13): 1239-1242.
[4]   Zhou F, Yu T, Du R H, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet (London, England), 2020, 395(10229): 1054-1062.
doi: 10.1016/S0140-6736(20)30566-3
[5]   Khan F A, Stewart I, Fabbri L, et al. Systematic review and meta-analysis of anakinra, sarilumab, siltuximab and tocilizumab for COVID-19. Thorax, 2021, 76(9): 907-919.
doi: 10.1136/thoraxjnl-2020-215266
[6]   REACT Working Group, Shankar-Hari M, Vale C L, et al. Association between administration of IL-6 antagonists and mortality among patients hospitalized for COVID-19: a meta-analysis. JAMA, 2021, 326(6): 499-518.
doi: 10.1001/jama.2021.11330 pmid: 34228774
[7]   REMAP-CAP Investigators, Gordon A C, Mouncey P R, et al. Interleukin-6 receptor antagonists in critically ill patients with covid-19. The New England Journal of Medicine, 2021, 384(16): 1491-1502.
doi: 10.1056/NEJMoa2100433
[8]   Metcalfe R D, Putoczki T L, Griffin M D W. Structural understanding of interleukin 6 family cytokine signaling and targeted therapies: focus on interleukin 11. Frontiers in Immunology, 2020, 11: 1424.
doi: 10.3389/fimmu.2020.01424 pmid: 32765502
[9]   Kang S J, Narazaki M, Metwally H, et al. Historical overview of the interleukin-6 family cytokine. The Journal of Experimental Medicine, 2020, 217(5): e20190347.
doi: 10.1084/jem.20190347
[10]   Boulanger M J, Chow D C, Brevnova E E, et al. Hexameric structure and assembly of the interleukin-6/IL-6 alpha-receptor/gp130 complex. Science, 2003, 300(5628): 2101-2104.
doi: 10.1126/science.1083901 pmid: 12829785
[11]   Riethmueller S, Somasundaram P, Ehlers J C, et al. Proteolytic origin of the soluble human IL-6R in vivo and a decisive role of N-glycosylation. PLoS Biology, 2017, 15(1): e2000080.
doi: 10.1371/journal.pbio.2000080
[12]   Riethmueller S, Ehlers J C, Lokau J, et al. Cleavage site localization differentially controls interleukin-6 receptor proteolysis by ADAM10 and ADAM17. Scientific Reports, 2016, 6: 25550.
doi: 10.1038/srep25550 pmid: 27151651
[13]   Boulanger M J, Bankovich A J, Kortemme T, et al. Convergent mechanisms for recognition of divergent cytokines by the shared signaling receptor gp130. Molecular Cell, 2003, 12(3): 577-589.
pmid: 14527405
[14]   Timmermann A, Küster A, Kurth I, et al. A functional role of the membrane-proximal extracellular domains of the signal transducer gp 130 in heterodimerization with the leukemia inhibitory factor receptor. European Journal of Biochemistry, 2002, 269(11): 2716-2726.
pmid: 12047380
[15]   Rose-John S. The soluble interleukin 6 receptor: advanced therapeutic options in inflammation. Clinical Pharmacology and Therapeutics, 2017, 102(4): 591-598.
doi: 10.1002/cpt.782 pmid: 28675418
[16]   Heink S, Yogev N, Garbers C, et al. Trans-presentation of IL-6 by dendritic cells is required for the priming of pathogenic TH17 cells. Nature Immunology, 2017, 18 (1): 74-85.
doi: 10.1038/ni.3632
[17]   贾春翠, 饶春明, 于雷. 以白细胞介素-6信号通路为靶点的生物技术药物研究进展. 中国生物制品学杂志, 2019, 32(9): 1048-1053.
[17]   Jia C C, Rao C M, Yu L. Progress in research on biological drugs targeting IL-6 signal pathway. Chinese Journal of Biologicals, 2019, 32(9): 1048-1053.
[18]   Grygiel-Górniak B, Shaikh O, Kumar N N, et al. Use of the rheumatic drug tocilizumab for treatment of SARS-CoV-2 patients. Reumatologia, 2021, 59(4): 252-259.
doi: 10.5114/reum.2021.108554
[19]   VanRhee F, Fayad L, Borghaei H, et al. CNTO 328, an anti-interleukin (IL)-6 monoclonal antibody (MAb) - preliminary results of subjects with castleman’s disease from a phase 1 study in selected hematological malignancies. Blood, 2006, 108(11): 2728.
doi: 10.1182/blood.V108.11.2728.2728
[20]   Liu A Y, Nabel C S, Finkelman B S, et al. Idiopathic multicentric Castleman’s disease: a systematic literature review. The Lancet Haematology, 2016, 3(4): e163-e175.
doi: 10.1016/S2352-3026(16)00006-5
[21]   Rhee F V, Voorhees P, Dispenzieri A, et al. International, evidence-based consensus treatment guidelines for idiopathic multicentric Castleman disease. Blood, 2018, 132(20): 2115-2124.
[22]   Johnson D E, O’Keefe R A, Grandis J R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nature Reviews Clinical Oncology, 2018, 15 (4): 234-248.
doi: 10.1038/nrclinonc.2018.8 pmid: 29405201
[23]   Ortiz-Montero P, Londoño-Vallejo A, Vernot J P. Senescence-associated IL-6 and IL-8 cytokines induce a self- and cross-reinforced senescence/inflammatory milieu strengthening tumorigenic capabilities in the MCF-7 breast cancer cell line. Cell Communication and Signaling: CCS, 2017, 15(1): 17.
doi: 10.1186/s12964-017-0172-3
[24]   Balamurugan K, Mendoza-Villanueva D, Sharan S, et al. C/EBPδ links IL-6 and HIF-1 signaling to promote breast cancer stem cell-associated phenotypes. Oncogene, 2019, 38 (20): 3765-3780.
doi: 10.1038/s41388-018-0516-5 pmid: 30262865
[25]   Kim J H, Choi H S, Kim S L, et al. The PAK1-Stat 3 signaling pathway activates IL-6 gene transcription and human breast cancer stem cell formation. Cancers, 2019, 11(10): 1527.
doi: 10.3390/cancers11101527
[26]   Ibrahim S A, Gadalla R, El-Ghonaimy E A, et al. Syndecan-1 is a novel molecular marker for triple negative inflammatory breast cancer and modulates the cancer stem cell phenotype via the IL-6/STAT3, Notch and EGFR signaling pathways. Molecular Cancer, 2017, 16(1): 57.
doi: 10.1186/s12943-017-0621-z
[27]   Weng Y S, Tseng H Y, Chen Y N, et al. MCT-1/miR-34a/IL-6/IL-6R signaling axis promotes EMT progression, cancer stemness and M 2 macrophage polarization in triple-negative breast cancer. Molecular Cancer, 2019, 18(1): 42.
doi: 10.1186/s12943-019-0988-0
[28]   Wang Q, Yu C, Yue C, et al. Fusobacterium nucleatum produces cancer stem cell characteristics via EMT-resembling variations. International Journal of Clinical and Experimental Pathology, 2020, 13(7): 1819-1828.
pmid: 32782710
[29]   Wang T, Song P, Zhong T, et al. The inflammatory cytokine IL-6 induces FRA 1 deacetylation promoting colorectal cancer stem-like properties. Oncogene, 2019, 38 (25): 4932-4947.
doi: 10.1038/s41388-019-0763-0
[30]   Kim B, Seo Y, Kwon J H, et al. IL-6 and IL-8, secreted by myofibroblasts in the tumor microenvironment, activate HES 1 to expand the cancer stem cell population in early colorectal tumor. Molecular Carcinogenesis, 2021, 60(3): 188-200.
doi: 10.1002/mc.23283
[31]   Xiong S, Wang R H, Chen Q, et al. Cancer-associated fibroblasts promote stem cell-like properties of hepatocellular carcinoma cells through IL-6/STAT3/Notch signaling. American Journal of Cancer Research, 2018, 8(2): 302-316.
doi: <空> pmid: 29511600
[32]   Zheng R D, Chen G F, Li X J, et al. Effect of IL-6 on proliferation of human thyroid anaplastic cancer stem cells. International Journal of Clinical and Experimental Pathology, 2019, 12(11): 3992-4001.
[33]   Ogawa H, Koyanagi-Aoi M, Otani K, et al. Interleukin-6 blockade attenuates lung cancer tissue construction integrated by cancer stem cells. Scientific Reports, 2017, 7: 12317.
doi: 10.1038/s41598-017-12017-y
[34]   Xu H T, Zhou Y, Li W, et al. Tumor-derived mesenchymal-stem-cell-secreted IL-6 enhances resistance to cisplatin via the STAT 3 pathway in breast cancer. Oncology Letters, 2018, 15(6): 9142-9150.
[35]   Sun B, Han Y, Cai H, et al. Long non-coding RNA SNHG3, induced by IL-6/STAT3 transactivation, promotes stem cell-like properties of gastric cancer cells by regulating the miR-3619-5p/ARL2 axis. Cellular Oncology (Dordrecht), 2021, 44(1): 179-192.
[36]   Wang Y N, Zong X Y, Mitra S, et al. IL-6 mediates platinum-induced enrichment of ovarian cancer stem cells. JCI Insight, 2018, 3(23): e122360.
doi: 10.1172/jci.insight.122360
[37]   Yousefi H, Momeny M, Ghaffari S H, et al. IL-6/IL-6R pathway is a therapeutic target in chemoresistant ovarian cancer. Tumori, 2019, 105(1): 84-91.
doi: 10.1177/0300891618784790 pmid: 30021477
[38]   Li Y, Chen G, Han Z J, et al. IL-6/STAT3 signaling contributes to sorafenib resistance in hepatocellular carcinoma through targeting cancer stem cells. OncoTargets and Therapy, 2020, 13: 9721-9730.
doi: 10.2147/OTT.S262089
[39]   Lv Y, Cang W, Li Q, et al. Erlotinib overcomes paclitaxel-resistant cancer stem cells by blocking the EGFR-CREB/GRβ-IL-6 axis in MUC1-positive cervical cancer. Oncogenesis, 2019, 8: 70.
doi: 10.1038/s41389-019-0179-2
[40]   Fu Q, Liu P, Sun X M, et al. Ribonucleic acid interference knockdown of IL-6 enhances the efficacy of cisplatin in laryngeal cancer stem cells by down-regulating the IL-6/STAT3/HIF1 pathway. Cancer Cell International, 2017, 17: 79.
doi: 10.1186/s12935-017-0448-0
[41]   Zhong W, Zhu Z, Xu X, et al. Human bone marrow-derived mesenchymal stem cells promote the growth and drug-resistance of diffuse large B-cell lymphoma by secreting IL-6 and elevating IL-17A levels. Journal of Experimental & Clinical Cancer Research, 2019, 38(1): 73.
[42]   Zeng J C, Chen S S, Li C H, et al. Mesenchymal stem/stromal cells-derived IL-6 promotes nasopharyngeal carcinoma growth and resistance to cisplatin via upregulating CD73 expression. Journal of Cancer, 2020, 11(8): 2068-2079.
doi: 10.7150/jca.37932
[43]   Kim H S, Chen Y C, Nör F, et al. Endothelial-derived interleukin-6 induces cancer stem cell motility by generating a chemotactic gradient towards blood vessels. Oncotarget, 2017, 8(59): 100339-100352.
doi: 10.18632/oncotarget.22225
[44]   Ascierto P A, Fu B Q, Wei H M. IL-6 modulation for COVID-19: the right patients at the right time? Journal for Immunotherapy of Cancer, 2021, 9(4): e002285.
doi: 10.1136/jitc-2020-002285
[45]   Kim J S, Lee J Y, Yang J W, et al. Immunopathogenesis and treatment of cytokine storm in COVID-19. Theranostics, 2021, 11(1): 316-329.
doi: 10.7150/thno.49713
[46]   Gritti G, Raimondi F, Bottazzi B, et al. Siltuximab downregulates interleukin-8 and pentraxin 3 to improve ventilatory status and survival in severe COVID-19. Leukemia, 2021, 35(9): 2710-2714.
doi: 10.1038/s41375-021-01299-x
[47]   Villaescusa L, Zaragozá F, Gayo-Abeleira I, et al. A new approach to the management of COVID-19. antagonists of IL-6: siltuximab. Advances in Therapy, 2022, 9:1126-1148.
[48]   吉勒斯-科马J, 奈特D, 佩里特D, 等. 抗IL-6抗体、组合物、方法和用途:中国, CN1694894. 2005-11-09.
[48]   Gilles-Comar J, Knight D, Perritt D, et al. Anti-IL-6 antibodies, compositions, methods and uses: China, CN1694894. 2005-11-09.
[49]   陈Y, 加德纳D, 克赖特D M, 等. 抗IL-6抗体、组合物、方法及应用:中国, CN101415819. 2009-04-22.
[49]   Chen Y, Gardner D, Kright D M, Anti-IL-6 antibodies, compositions, methods and applications: China, CN101415819. 2009-04-22.
[50]   Orlowski R Z, Gercheva L, Williams C, et al. A phase 2, randomized, double-blind, placebo-controlled study of siltuximab (anti-IL-6 MAb) and bortezomib versus bortezomib alone in patients with relapsed or refractory multiple myeloma. American Journal of Hematology, 2015, 90(1): 42-49.
doi: 10.1002/ajh.23868 pmid: 25294016
[51]   Brighton T A, Khot A, Harrison S J, et al. Randomized, double-blind, placebo-controlled, multicenter study of siltuximab in high-risk smoldering multiple myeloma. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2019, 25(13): 3772-3775.
doi: 10.1158/1078-0432.CCR-18-3470
[52]   Doberer K, Duerr M, Halloran P F, et al. A randomized clinical trial of anti-IL-6 antibody clazakizumab in late antibody-mediated kidney transplant rejection. Journal of the American Society of Nephrology: JASN, 2021, 32(3): 708-722.
doi: 10.1681/ASN.2020071106
[53]   Shaw S, Bourne T, Meier C, et al. Discovery and characterization of olokizumab: a humanized antibody targeting interleukin-6 and neutralizing gp130-signaling. mAbs, 2014, 6(3): 774-782.
[54]   Genovese M C, Fleischmann R, Furst D, et al. Efficacy and safety of olokizumab in patients with rheumatoid arthritis with an inadequate response to TNF inhibitor therapy: outcomes of a randomised Phase IIb study. Annals of the Rheumatic Diseases, 2014, 73(9): 1607-1615.
doi: 10.1136/annrheumdis-2013-204760 pmid: 24641941
[55]   Nasonov E, Fatenejad S, Feist E, et al. Olokizumab, a monoclonal antibody against interleukin 6, in combination with methotrexate in patients with rheumatoid arthritis inadequately controlled by methotrexate: efficacy and safety results of a randomised controlled phase III study. [2022-03-02]. https://pubmed.ncbi.nlm.nih.gov/34344706/ Annals of the Rheumatic Diseases, 2021, 2021Aug3;annrheumdis-2021Aug3;annrheu2021-219876.
[56]   Antonov V N, Ignatova G L, Pribytkova O V, et al. Experience of olokizumab use in COVID-19 patients. Terapevticheskii Arkhiv, 2020, 92(12): 148-154.
doi: 10.26442/00403660.2020.12.200522 pmid: 33720587
[57]   Ridker P M, Devalaraja M, Baeres F M M, et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial. The Lancet, 2021, 397(10289): 2060-2069.
doi: 10.1016/S0140-6736(21)00520-1
[58]   Danese S, Vermeire S, Hellstern P, et al. Randomised trial and open-label extension study of an anti-interleukin-6 antibody in Crohn’s disease (ANDANTE I and II). Gut, 2019, 68(1): 40-48.
doi: 10.1136/gutjnl-2017-314562
[59]   Sitenga J, Aird G, Ahmed A, et al. Impact of siltuximab on patient-related outcomes in multicentric Castleman’s disease. Patient Related Outcome Measures, 2018, 9: 35-41.
doi: 10.2147/PROM.S140011 pmid: 29391839
[60]   Mesquida M, Molins B, Llorenç V, et al. Targeting interleukin-6 in autoimmune uveitis. Autoimmunity Reviews, 2017, 16(10): 1079-1089.
doi: S1568-9972(17)30208-2 pmid: 28778705
[61]   Weinblatt M E, Mease P, Mysler E, et al. The efficacy and safety of subcutaneous clazakizumab in patients with moderate-to-severe rheumatoid arthritis and an inadequate response to methotrexate: results from a multinational, phase IIb, randomized, double-blind, placebo/active-controlled, dose-ranging study. Arthritis & Rheumatology (Hoboken, N J), 2015, 67(10): 2591-2600.
[62]   Pergola P E, Devalaraja M, Fishbane S, et al. Ziltivekimab for treatment of Anemia of inflammation in patients on hemodialysis: results from a phase 1/ 2 multicenter, randomized, double-blind, placebo-controlled trial. Journal of the American Society of Nephrology: JASN, 2021, 32(1): 211-222.
doi: 10.1681/ASN.2020050595
[63]   Finch D K, Sleeman M A, Moisan J, et al. Whole-molecule antibody engineering: generation of a high-affinity anti-IL-6 antibody with extended pharmacokinetics. Journal of Molecular Biology, 2011, 411(4): 791-807.
doi: 10.1016/j.jmb.2011.06.031
[64]   Al-Bawardy B, Shivashankar R, Proctor D D. Novel and emerging therapies for inflammatory bowel disease. Frontiers in Pharmacology, 2021, 12: 651415.
doi: 10.3389/fphar.2021.651415
[65]   Avci A B, Feist E, Burmester G R. Targeting IL-6 or IL-6 receptor in rheumatoid arthritis: what’s the difference? BioDrugs, 2018, 32(6): 531-546.
doi: 10.1007/s40259-018-0320-3
[66]   Chavele K, Gardner D, Loza M, et al. In vitro cellular profiling of sirukumab, an anti-IL-6 cytokine monoclonal antibody, reveals a distinct phenotypic signature compared to tocilizumab, an anti-IL-6 receptor monoclonal antibody. Arthritis Rheumatol, 2016, 68 (suppl 10): 1611.
[1] CHEN Yang, LIU Tong, ZHANG Jia-qi, LIAO Hua-xin, LIN Yue-zhi, WANG Xiao-jun, WANG Ya-yu. Screening of Monoclonal Antibodies Targeting the Equine IgG1 Based on Single B Cell Antibodies Gene Amplification Technology[J]. China Biotechnology, 2022, 42(4): 17-23.
[2] GUO Yang,CHEN Yan-juan,LIU Yi-chen,WANG Hai-jie,WANG Cheng-ji,WANG Jue,WAN Ying-han,ZHOU Yu,XI Jun,SHEN Ru-ling. Pd-1 Gene Knockout Mouse Model Construction and Preliminary Phenotype Verification[J]. China Biotechnology, 2021, 41(10): 1-11.
[3] ZHAO Yan-shu,ZHANG Jin-hua,SONG Hao. Advances in Production of Monoclonal Antibody and Antibody Fragments in Engineered Prokaryotes and Yeast[J]. China Biotechnology, 2020, 40(8): 74-83.
[4] WANG Meng,SONG Hui-ru,CHENG Yu-jie,WANG Yi,YANG Bo,HU Zheng. Accurate Detection of Streptococcus pneumoniae by Using Ribosomal Protein L7 / L12 as Molecular Marker[J]. China Biotechnology, 2020, 40(4): 34-41.
[5] JIANG Yi-fan,JIA Yu,Wang Long,WANG Zhi-ming. The Glycosylation Design and Control of Monoclonal Antibody by Cell Culture[J]. China Biotechnology, 2019, 39(8): 95-103.
[6] Lu CHEN,Mao HUANG,Qi PENG,Jia-li ZHAO,Jia-qing XIE,Lu LIN,Li-jun HU,Yi-yun HUANG,Qin HU,Lan ZHOU. S100A6 Promotes Cell Proliferation of Colorectal Cancer via Upregulating IL-6 Expression of Macrophages[J]. China Biotechnology, 2019, 39(4): 1-7.
[7] GUO Le,WANG Shu-e,HE Meng,ZHANG Fan,LIU Hong-peng,LIU Kun-mei. Expression and Immunological Properties of Multivalent Epitope Vaccine CWAE Against Helicobacter pylori[J]. China Biotechnology, 2019, 39(12): 1-8.
[8] LIU Guo-fang,LIU Xiao-zhi,GAO Jian,WANG Zhi-ming. Effects of Host Cell Residual Proteins on the Quality and Their Quality Control of Monoclonal Antibody[J]. China Biotechnology, 2019, 39(10): 105-110.
[9] CHEN Xiu-xiu,WU Cheng-lin,ZHOU Li-jun. Research Progress in Preparation and Clinical Application of Therapeutic Human Antibodies[J]. China Biotechnology, 2019, 39(10): 90-96.
[10] Jian-wei REN,Jun LI,Shang-ze LI. Human CT55 Protein Prokaryotic Expression and Its Production of Monoclonal Antibody[J]. China Biotechnology, 2018, 38(11): 1-8.
[11] Kai-yun MAO,Yue-lei FAN,Heng-zhe WANG,Da-ming CHEN. Market Competition Pattern of Global PD-1/PD-L1 Monoclonal Antibody[J]. China Biotechnology, 2018, 38(11): 103-115.
[12] Jing-jing SUN,Wei-wei ZHOU,Lei-ming ZHOU,Qiao-hui ZHAO,Gui-lin LI. Advance in Large-Scale Culture of Hybridoma Cells in Vitro[J]. China Biotechnology, 2018, 38(10): 82-89.
[13] WANG Yun-long, ZHAO Er-xia, LI Yu-lin. Expression, Purification and Identification of Thymidine Kinase 1 Recombinant Protein[J]. China Biotechnology, 2017, 37(9): 15-22.
[14] WU Meng-ling, ZHOU Jia-wang, DU Jun. Development and Application of A Double Monoclonal Antibody Sandwich ELISA for the Assay of Nodal[J]. China Biotechnology, 2017, 37(3): 51-57.
[15] SUN Wen-jia, YAO Yu-feng, YANG Xu, HUANG Wei-wei, LIU Cun-bao, LONG Qiong, CHU Xiao-jie, MA Yan-bing. Presentation of HPV 16L1 Peptide-based HBcAg Virus-like Particle and Induction of Specific Antibody[J]. China Biotechnology, 2017, 37(3): 58-64.