Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (5): 24-36    DOI: 10.13523/j.cb.2210029
    
Molecular Modification and Enzymatic Properties of Glutamate Decarboxylase
ZHOU Li-ya1,NIU Yu-jie1,ZHENG Xiao-bing1,JIANG Yan-jun1,**(),MA Li1,BAI Jing2,HE Ying1,**()
1 School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
2 College of Food Science and Biology, Hebei University of Science & Technology, Shijiazhuang 050018, China
Download: HTML   PDF(2743KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

By combining and screening several mutations of glutamate decarboxylase (GadB) derived from E. coli, a combined mutant M2 with a wider pH range, higher catalytic activity and higher pH and thermal stabilities was obtained. Compared with the wild-type GadB-WT, the pH range of the combined mutant M2 was effectively broadened, and it produced a higher catalytic activity of 113.43% over the wild-type GadB-WT under pH6.0. After the optimization for fermentation medium and induction conditions of the recombinant bacteria, an overall 104.13% increase of enzyme activity was gained over the unoptimized medium. On this basis, the enzymatic properties of M2 were determined. The optimum pH was 5.0 and the optimum temperature was 37℃. Compared with wild-type Gad-WT, the pH stability and thermal stability of M2 were enhanced to some extent. The kinetic parameters of M2 were determined as follows:Km was 7.316 μmol/L, kcat was 13.387 s-1, and kcat/Km was 1.830 L/(s·μmol). The combined mutant M2 obtained in this study further enriches the GAD mutant enzyme library for the synthesis of γ-aminobutyric acid and has a promising application prospect.



Key wordsGlutamate decarboxylase      γ-Aminobutyric acid      Site-directed mutagenesis      Fermentation optimization     
Received: 19 October 2022      Published: 01 June 2023
ZTFLH:  Q814  
Cite this article:

ZHOU Li-ya, NIU Yu-jie, ZHENG Xiao-bing, JIANG Yan-jun, MA Li, BAI Jing, HE Ying. Molecular Modification and Enzymatic Properties of Glutamate Decarboxylase. China Biotechnology, 2023, 43(5): 24-36.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2210029     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I5/24

Fig.1 The reaction equation of synthesis of GABA (a) and geminal aldimine (b) E represents enzyme, R represents amino acid side chain
编号 因素 水平
-1 0 1
A 甘油浓度/(g/L) 4 8 12
B 复合氮源浓度/(g/L) 20 25 30
C 复合氮源比例/(g:g) 0.5 1 1.5
D 磷酸盐浓度/(mmol/L) 100 120 140
Table 1 Factors and levels of Box-Behnken experimental design
来源 名称 pH 温度/℃ 比酶活/(U/mg) 参考文献
E.coli GadB-WT 4.5 40 86 本文
M1 4.0 37 83 本文
M2 5.0 37 137 本文
M3 4.0 37 110 本文
Glu89Gln/Δ452-466 4.0 37 32~35 [18]
Glu89Gln/His465Ala 4.0 37 100~105 [18]
L.brevis CGMCC 1306 Wild-type GAD 4.8 48 7.2~7.5 [19]
GADΔC 4.8 48 7.5~8.0 [19]
L.brevis Lb85 GadB1 4.6 40 24~26 [20]
GadB1T17I/D294G/E312S/Q346H 4.0 40 62~65 [20]
L.plantarum ATCC 14917 GAD-WT 5.0 40 8.9 [21]
GAD Δ11 5.0 37 9.8 [21]
E.raffinosus GAD 4.6 45 21.7 [27]
N.crassa GAD 5.0 37 2.76 [28]
A. oryzae GAD 5.5 60 48.2 [29]
T.kodakaraensis GAD 8.0~9.0 90 NR [30]
P.horikoshii PhGAD 8.0 >97 0.26 [31]
Table 2 Enzyme activities of GADs derived from several origins
Fig.2 Active pockets volume prediction of GadBs (a)GadB-WT (b)M1 (c)M2 (d)M3
Fig.3 SDS-PAGE analysis of GadBs (a) M: Protein marker; Lanes1-2: GadB-WT, M1; (b) M: Protein marker; Lanes1-2: M2 and M3
Fig.4 Enzyme activities of GadBs at pH 4.5 and pH 6.0
实验编号 A B C D 比酶活/(U/mL)
1 0 0 0 0 4.040
2 1 0 -1 0 3.415
3 0 -1 1 0 3.667
4 0 0 -1 -1 2.680
5 0 1 0 1 3.234
6 0 -1 -1 0 3.218
7 0 1 -1 0 3.623
8 0 0 0 0 3.866
9 -1 0 -1 0 3.015
10 1 1 0 0 3.083
11 0 -1 0 1 3.605
12 -1 0 0 1 3.280
13 -1 0 0 -1 3.080
14 1 0 1 0 2.677
15 0 1 1 0 2.404
16 -1 1 0 0 3.171
17 0 -1 0 -1 3.484
18 0 0 1 -1 3.605
19 0 0 0 0 3.898
20 0 0 1 1 2.448
21 0 1 0 -1 3.230
22 -1 -1 0 0 3.450
23 0 0 -1 1 3.814
24 -1 0 1 0 3.152
25 1 0 0 1 3.251
26 1 0 0 -1 3.410
27 1 -1 0 0 3.565
Table 3 The experimental results of Box-Behnken Design
来源 平方和 自由度 均方 F P
Model 4.539 4 14 0.324 2 64.393 4 < 0.000 1 显著
A 0.005 3 1 0.005 3 1.055 1 0.324 6
B 0.420 0 1 0.420 0 83.410 6 < 0.000 1
C 0.273 3 1 0.273 3 54.278 2 < 0.000 1
D 0.001 7 1 0.001 7 0.336 1 0.572 8
AB 0.010 2 1 0.010 2 2.025 9 0.180 1
AC 0.191 6 1 0.191 6 38.055 9 < 0.000 1
AD 0.032 2 1 0.032 2 6.398 8 0.026 4
BC 0.695 1 1 0.695 1 138.051 6 < 0.000 1
BD 0.003 5 1 0.003 5 0.685 5 0.423 9
CD 1.312 2 1 1.312 2 260.591 4 < 0.000 1
A2 0.771 8 1 0.771 8 153.280 8 < 0.000 1
B2 0.287 9 1 0.287 9 57.183 3 < 0.000 1
C2 1.251 8 1 1.251 8 248.610 1 < 0.000 1
D2 0.508 5 1 0.508 5 100.995 0 < 0.000 1
残差 0.060 4 12 0.005 0
失拟值 0.043 4 10 0.004 3 0.508 8 0.809 4 不显著
纯误差 0.017 0 2 0.008 5
总离差 4.599 8 26
Table 4 The experimental variance analysis of Box-Behnken Design
Fig.5 The interactive effects of variables on Enzyme activity of M2 (a) The interactive effect of glycerol concentration and compound nitrogen source concentration (b) The interactive effect of glycerol concentration and ratio of compound nitrogen source (c) The interactive effect of glycerol concentration and phosphate concentration (d) The interactive effect of nitrogen source concentration and ratio of compound nitrogen source (e) The interactive effect of nitrogen source concentration and phosphate concentration (f) The interactive effect of ratio of compound nitrogen source and phosphate concentration
Fig.6 Effect of induction conditions on fermentation of M2 (a) IPTG concentration (b) Induction temperature (c) Induction time
Fig.7 Optimal pH (a) and temperature (b) of GadB-WT and M2
Fig.8 pH (a) and thermal (b) stabilities of GadB-WT and M2
Km/(μmol/L) kcat/(s-1) kcat/Km/
[L/(s·μmol)]
GadB-WT 8.155 3.446 0.423
M2 7.316 13.387 1.830
Table 5 The kinetic parameters of GadB-WT and M2
Fig.9 3D demonstration of active sites of GadBs Aldamine formed between the PLP-Lys276 Schiff base and His465 of GadB-WT(a), M2(b), M3(c). Molecular docking of L-MSG with active site of GadB-WT(d), M2(e), M3(f). Surface represents active pocket; Green sticks represent L-MSG; Pink sticks represent residues which may from interaction with L-MSG or PLP; Yellow sticks represent mutant residues
Fig.10 Schematic diagrams of electrostatic potential and B-factor of GadB-WT and M2 (a) Electrostatic potential of GadB-WT (b) Electrostatic potential of M2 (c) B-factor of GadB-WT (d) B-factor of M2
[1]   Hong A R, Kim Y A, Bae J H, et al. A possible link between parathyroid hormone secretion and local regulation of GABA in human parathyroid adenomas. The Journal of Clinical Endocrinology & Metabolism, 2016, 101(6): 2594-2601.
doi: 10.1210/jc.2015-4329
[2]   Xu N, Wei L, Liu J. Biotechnological advances and perspectives of gamma-aminobutyric acid production. World Journal of Microbiology and Biotechnology, 2017, 33(3): 64.
doi: 10.1007/s11274-017-2234-5 pmid: 28247260
[3]   Piao X, Jiang S H, Wang J N, et al. Pingchuan formula attenuates airway mucus hypersecretion via regulation of the PNEC-GABA-IL13-Muc5ac axis in asthmatic mice. Biomedicine & Pharmacotherapy, 2021, 140: 111746.
doi: 10.1016/j.biopha.2021.111746
[4]   Whissell P D, Bang J Y, Khan I, et al. Selective activation of cholecystokinin-expressing GABA (CCK-GABA) neurons enhances memory and cognition. eNeuro, 2019, 6(1): ENEURO.0360-ENEURO.0318.2019.
[5]   Karim N, Khan I, Abdelhalim A, et al. Stigmasterol can be new steroidal drug for neurological disorders: evidence of the GABAergic mechanism via receptor modulation. Phytomedicine, 2021, 90: 153646.
doi: 10.1016/j.phymed.2021.153646
[6]   Tu J, Jin Y C, Zhuo J, et al. Exogenous GABA improves the antioxidant and anti-aging ability of silkworm (Bombyx mori). Food Chemistry, 2022, 383: 132400.
doi: 10.1016/j.foodchem.2022.132400
[7]   Park S J, Kim E Y, Noh W, et al. Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli. Bioprocess and Biosystems Engineering, 2013, 36(7): 885-892.
doi: 10.1007/s00449-012-0821-2 pmid: 23010721
[8]   Xu M J, Gao H, Ma Z F, et al. Development of a 2-pyrrolidone biosynthetic pathway in Corynebacterium glutamicum by engineering an acetyl-CoA balance route. Amino Acids, 2022, 54(11): 1437-1450.
doi: 10.1007/s00726-022-03174-0
[9]   Grewal J, Khare S K. 2-Pyrrolidone synthesis from γ-aminobutyric acid produced by Lactobacillus brevis under solid-state fermentation utilizing toxic deoiled cottonseed cake. Bioprocess and Biosystems Engineering, 2017, 40(1): 145-152.
doi: 10.1007/s00449-016-1683-9
[10]   Mozzarelli A, Bettati S. Exploring the pyridoxal 5'-phosphate-dependent enzymes. The Chemical Record, 2006, 6(5): 275-287.
doi: 10.1002/(ISSN)1528-0691
[11]   Jackson L K, Baldwin J, Akella R, et al. Multiple active site conformations revealed by distant site mutation in ornithine decarboxylase. Biochemistry, 2004, 43(41): 12990-12999.
pmid: 15476392
[12]   Hua Y J, Lyu C J, Liu C Y, et al. Improving the thermostability of glutamate decarboxylase from Lactobacillus brevis by consensus mutagenesis. Applied Biochemistry and Biotechnology, 2020, 191(4): 1456-1469.
doi: 10.1007/s12010-020-03283-0
[13]   Takagi H, Kozuka K, Mimura K, et al. Design of a full-consensus glutamate decarboxylase and its application to GABA biosynthesis. ChemBioChem, 2022, 23(8): e202100447.
[14]   Fan L Q, Li M W, Qiu Y J, et al. Increasing thermal stability of glutamate decarboxylase from Escherichia coli by site-directed saturation mutagenesis and its application in GABA production. Journal of Biotechnology, 2018, 278: 1-9.
doi: S0168-1656(18)30119-6 pmid: 29660473
[15]   Jun C H, Joo J C, Lee J H, et al. Thermostabilization of glutamate decarboxylase B from Escherichia coli by structure-guided design of its pH-responsive N-terminal interdomain. Journal of Biotechnology, 2014, 174: 22-28.
doi: 10.1016/j.jbiotec.2014.01.020
[16]   Pennacchietti E, Lammens T M, Capitani G, et al. Mutation of His465 alters the pH-dependent spectroscopic properties of Escherichia coli glutamate decarboxylase and broadens the range of its activity toward more alkaline pH. The Journal of Biological Chemistry, 2009, 284(46): 31587-31596.
doi: 10.1074/jbc.M109.049577
[17]   Choi J W, Yim S S, Lee S H, et al. Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range. Microbial Cell Factories, 2015, 14: 21.
doi: 10.1186/s12934-015-0205-9
[18]   Thu Ho N A, Hou C Y, Kim W H, et al. Expanding the active pH range of Escherichia coli glutamate decarboxylase by breaking the cooperativeness. Journal of Bioscience and Bioengineering, 2013, 115(2): 154-158.
doi: 10.1016/j.jbiosc.2012.09.002
[19]   Yu K, Lin L, Hu S, et al. C-terminal truncation of glutamate decarboxylase from Lactobacillus brevis CGMCC 1306 extends its activity toward near-neutral pH. Enzyme and Microbial Technology, 2012, 50(4-5): 263-269.
doi: 10.1016/j.enzmictec.2012.01.010
[20]   Shi F, Xie Y L, Jiang J J, et al. Directed evolution and mutagenesis of glutamate decarboxylase from Lactobacillus brevis Lb85 to broaden the range of its activity toward a near-neutral pH. Enzyme and Microbial Technology, 2014, 61-62: 35-43.
doi: 10.1016/j.enzmictec.2014.04.012
[21]   Shin S M, Kim H, Joo Y, et al. Characterization of glutamate decarboxylase from Lactobacillus plantarum and its C-terminal function for the pH dependence of activity. Journal of Agricultural and Food Chemistry, 2014, 62(50): 12186-12193.
doi: 10.1021/jf504656h
[22]   许建军, 江波, 许时婴. 比色法快速测定乳酸菌谷氨酸脱羧酶活力及其应用. 微生物学通报, 2004, 31(2): 66-71.
[22]   Xu J J, Jiang B, Xu S Y. Rapid determination of glutamate decarboxylase activity from lactic acid bacteria by spectrometric method and its applications. Microbiology, 2004, 31(2): 66-71.
[23]   Cui W T, Xue H R, Cheng H D, et al. Increasing the amount of phosphoric acid enhances the suitability of Bradford assay for proteomic research. Electrophoresis, 2019, 40(7): 1107-1112.
doi: 10.1002/elps.201800430 pmid: 30570157
[24]   Le Q A T, Joo J C, Yoo Y J, et al. Development of thermostable Candida antarctica lipase B through novel in silico design of disulfide bridge. Biotechnology and Bioengineering, 2012, 109(4): 867-876.
doi: 10.1002/bit.24371
[25]   Wang Y W, Fu Z, Huang H Q, et al. Improved thermal performance of Thermomyces lanuginosus GH11 xylanase by engineering of an N-terminal disulfide bridge. Bioresource Technology, 2012, 112: 275-279.
doi: 10.1016/j.biortech.2012.02.092
[26]   Guérin F, Barbe S, Pizzut-Serin S, et al. Structural investigation of the thermostability and product specificity of amylosucrase from the bacterium Deinococcus geothermalis. The Journal of Biological Chemistry, 2012, 287(9): 6642-6654.
doi: 10.1074/jbc.M111.322917
[27]   Chang C Y, Zhang J, Ma S X, et al. Purification and characterization of glutamate decarboxylase from Enterococcus raffinosus TCCC11660. Journal of Industrial Microbiology & Biotechnology, 2017, 44(6): 817-824.
[28]   Hao R, Schmit J C. Purification and characterization of glutamate decarboxylase from Neurospora crassa conidia. The Journal of Biological Chemistry, 1991, 266(8): 5135-5139.
doi: 10.1016/S0021-9258(19)67765-3
[29]   Tsuchiya K, Nishimura K, Iwahara M. Purification and characterization of glutamate decarboxylase from Aspergillus oryzae. Food Science and Technology Research, 2003, 9(3): 283-287.
doi: 10.3136/fstr.9.283
[30]   Kimi T, Kenryo N, Masayoshi I. Purification and characterization of glutamate decarboxylase from Aspergillus oryzae. Food Science and Technology Research, 2003, 9(3): 283-287.
doi: 10.3136/fstr.9.283
[31]   Hong S J, Ullah I, Park G S, et al. Overexpression and characterization of recombinant glutamate decarboxylase from Thermococcus kodakaraensis KOD1. Journal of the Korean Society for Applied Biological Chemistry, 2012, 55(2): 213-218.
doi: 10.1007/s13765-012-1006-z
[32]   Kim H W, Kashima Y, Ishikawa K, et al. Purification and characterization of the first archaeal glutamate decarboxylase from Pyrococcus horikoshii. Bioscience, Biotechnology, and Biochemistry, 2009, 73(1): 224-227.
doi: 10.1271/bbb.80583
[33]   Yu J, Zhou Y, Tanaka I, et al. Roll: a new algorithm for the detection of protein pockets and cavities with a rolling probe sphere. Bioinformatics, 2010, 26(1): 46-52.
doi: 10.1093/bioinformatics/btp599 pmid: 19846440
[34]   Malakar P, Venkatesh K V. Effect of substrate and IPTG concentrations on the burden to growth of Escherichia coli on glycerol due to the expression of Lac proteins. Applied Microbiology and Biotechnology, 2012, 93(6): 2543-2549.
doi: 10.1007/s00253-011-3642-3
[35]   Capitani G. Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. The EMBO Journal, 2003, 22(16): 4027-4037.
doi: 10.1093/emboj/cdg403
[36]   Der B S, Kluwe C, Miklos A E, et al. Alternative computational protocols for supercharging protein surfaces for reversible unfolding and retention of stability. PLoS One, 2013, 8(5): e64363.
doi: 10.1371/journal.pone.0064363
[1] PANG Guang-wu,LIANG Zhi-qun. Mutagenic Breeding and Optimization of Fermentation Conditions of Fibrinolytic Enzyme from Marine Bacillus subtilis[J]. China Biotechnology, 2022, 42(12): 27-36.
[2] ZHAO Xiao-yan,CHEN Yun-da,ZHANG Ya-qian,WU Xiao-yu,WANG Fei,CHEN Jin-yin. Site-directed Mutagenesis Improves the Thermostability of Trehalose Synthase TreS II from Myxococcus sp.V11[J]. China Biotechnology, 2020, 40(3): 79-87.
[3] SU Yong-jun,HU Die,HU Bo-chun,LI Chuang,WEN Zheng,ZHANG Chen,WU Min-chen. Improving the Enantioselectivity of an Epoxide Hydrolase towards p-Methylphenyl Glycidyl Ether by Site-directed Mutagenesis[J]. China Biotechnology, 2020, 40(3): 88-95.
[4] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[5] Ting-ting KAN,Xun-cheng ZONG,Yong-jun SU,Ting-ting WANG,Chuang LI,Die HU,Min-chen WU. Site-directed Mutagenesis of PvEH1 to Improve Its Catalytic Properties towards ortho-Methylphenyl Glycidyl Ether[J]. China Biotechnology, 2019, 39(6): 9-16.
[6] REN Li-qiong,WU Jing,CHEN Sheng. Co-Expression of N-Acetyltransferase Enhances the Expression of Aspergillus nidulans α-Glucosidase in Pichia pastoris[J]. China Biotechnology, 2019, 39(10): 75-81.
[7] Hao-yi MENG,Dan-yang LI,Zheng-yang SUN,Zhao-yong YANG,Zhi-fei ZHANG,Li-jie YUAN. Substrate-binding Site of Ubiquitous Mitochondrial Creatine Kinase from Homo sapiens[J]. China Biotechnology, 2018, 38(5): 24-32.
[8] LI Xue-qing, YUAN Feng-jiau, CHENG Jian-qing, DONG Yun-hai, LI Jian-fang, WU Min-chen. Effect of Amino Acid H321 on the Enzymatic Properties of Hybrid β-Mannanase AuMan5Aloop[J]. China Biotechnology, 2017, 37(2): 48-53.
[9] WU Qin, HU Die, LI Xue-qing, YUAN Feng-jiao, LI Jian-fang, WU Min-chen. Site-directed Mutagenesis of Y13F to Improve the Thermotolerance of Mesophilic Xylanase from Aspergillus oryzae[J]. China Biotechnology, 2016, 36(12): 36-41.
[10] XIANG Mian, ZHU Jian-quan, YU Ji-hua, LI Yang-yang, LI Juan-juan, LIU Zu-bi, WANG Wan-jun, LIAO Hai, ZHOU Jia-yu. The Site-directed Mutation of Key Residues and the Analysis about Inhibitory Activity of Cassia obtusifolia Trypsin Inhibitor[J]. China Biotechnology, 2016, 36(10): 15-20.
[11] LI Yao-yao, BI Jing, WANG Yi-hong, QIN Yun-he, ZHANG Xue-lian. Lysine-322 Acetylation Negatively Regulates Isocitrate Lyase of Mycobacterium tuberculosis[J]. China Biotechnology, 2015, 35(6): 8-13.
[12] GAO Rui-ping, CHENG Long-bin, LI Zhen-qiu. A Simple and Rapid Single Primer PCR Method for Site-directed Mutagenesis[J]. China Biotechnology, 2015, 35(5): 61-65.
[13] XIA Ya-mu, LI Chen-chen. Genetic Modification and High Expression of Cyclodextrin Glycosyltransferase[J]. China Biotechnology, 2015, 35(2): 105-110.
[14] RUAN Jing-jun, YANG Yi, TANG Zi-zhong, CHEN Hui. Study on Tartary Buckwheat Trypsin Inhibitor Activity Sites by Using Site-directed Mutagenesis[J]. China Biotechnology, 2015, 35(12): 30-36.
[15] PEI Zhi-yong, HOU Xian-hui, GUI Xiao-ke, CHEN Yu-bao. Primer Spanner: A Web-based Platform to Design PCR Primers for High Efficient Site-directed Mutagenesis[J]. China Biotechnology, 2015, 35(10): 53-58.