Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (12): 27-36    DOI: 10.13523/j.cb.2207056
    
Mutagenic Breeding and Optimization of Fermentation Conditions of Fibrinolytic Enzyme from Marine Bacillus subtilis
PANG Guang-wu,LIANG Zhi-qun()
College of Life Science and Technology, Guangxi University, Nanning 530004, China
Download: HTML   PDF(1109KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: Cardiovascular diseases caused by thrombus have severely impaired human health. However, there are most of defects on traditional thrombolytic agents, like high price, low fibrin specificity and side effect. Enzyme from marine environment are rarely reported and expected to be efficient and economical thrombolytic drugs. Methods: In this experiment, a mutant strain PW6-3 with high fibrinolytic activity was obtained by UV mutagenesis using the marine-derived Bacillus subtilis LC6-1. The acquire mutant PW6-3 was subjected to process optimization of fibrinolytic enzyme production. Results: The UV-mutagenized high-yielding mutant strain PW6-3 was (6 960.21 ± 85.51) U/mL, which was 30.48% higher than the initial strain. The medium components and culture conditions of strain PW6-3 in shake-flask were optimized by single factor and orthogonal experiments. The optimal medium components were: Corn starch 30 g/L, corn pulp dry powder 40 g/L, CaCl2 3g/L. The optimal culture conditions were: Temperature of 32℃, speed of 200 r/min, loading volume of 50 mL in 250 mL flask, inoculation volume of 3% (v/v), initial pH of 6.5, seed age of 18 h, fermentation time of 66 h. Conclusion: After fermentation optimization, the enzyme activity of strain PW6-3 reached (9 203.63 ± 67.85) U/mL, which was 72.53% higher than initial strain LC6-1. The optimized yield is at a high level in the world at present.



Key wordsBacillus subtilis      Fibrinolytic enzyme      Mutagenesis      Fermentation optimization     
Received: 25 July 2022      Published: 05 January 2023
ZTFLH:  Q939  
Corresponding Authors: Zhi-qun LIANG     E-mail: zqliang@gxu.edu.cn
Cite this article:

PANG Guang-wu,LIANG Zhi-qun. Mutagenic Breeding and Optimization of Fermentation Conditions of Fibrinolytic Enzyme from Marine Bacillus subtilis. China Biotechnology, 2022, 42(12): 27-36.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2207056     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I12/27

因素 水平
1 2 3
碳源浓度/(g·L-1) 25 30 35
氮源浓度/(g·L-1) 35 40 45
无机盐浓度/(g·L-1) 2.5 3 3.5
误差 - - -
Table 1 The factors and levels in the orthogonal test L9 (34)
Fig.1 Standard curve of urokinase
Fig.2 UV-mutagenesis lethality curve
菌株编号 圈菌比 酶活力/(U·mL-1) 活力提高/%
LC6-1(初始菌) 2.14 5 334.51 ± 135.7 -
PW6-3 3.12 7 070.33 ± 50.67 32.54
Table 2 Results of plate primary screening and shake flask re-screening of UV mutagenesis
Fig.3 The genetic stability of UV mutagenized strain PW6-3
Fig.4 Effect of carbon sources (a) and corn starch concentration (b) on enzyme activity
Fig.5 Effect of nitrogen sources (a) and concentration of corn pulp dry powder (b) on enzyme activity
Fig.6 Effect of metal ions (a) and ratio of CaCl2 (b) on enzyme activitivity
试验 A(玉米淀粉) B(玉米浆干粉) C(CaCl2) D(空列) 酶活力(U·mL-1)
1 1 1 1 1 7 676.25
2 1 2 2 2 8 076.71
3 1 3 3 3 7 697.76
4 2 1 2 3 7 929.95
5 2 2 3 1 7 667.75
6 2 3 1 2 7 393.91
7 3 1 3 2 7 446.15
8 3 2 1 3 7 350.39
9 3 3 2 1 7 239.08
K1 7 816.91 7 684.12 7 473.18 7 561.03 -
K2 7 696.87 7 731.62 7 748.58 7 638.59 -
K3 7 345.21 7 443.25 7 637.22 7 659.37 -
R 471.70 288.37 275.38 98.34 -
Table 3 The result of orthogonal test
因素 偏差平方和 自由度 F比 F临界值 显著性
碳源浓度 360 576.79 2 23.37 19.000 *
氮源浓度 143 428.33 2 8.89 19.000 -
无机盐浓度 115 152.40 2 7.144 19.000 -
误差 16 118.50 2 1.000 - -
Table 4 Analysis of variance for the results of orthogonal test
Fig.7 Effect of temperature on enzyme activity
Fig.8 Effect of speed (a) and liquid loading (b) on enzyme activity
Fig.9 Effect of volume on enzyme activity
Fig.10 Effect of initial pH on enzyme activity
Fig.11 Growth curve of strain PW6-3 (a) and effect of seed age on enzyme activity (b)
Fig.12 Effect of fermentation time on enzyme activity
[1]   Wu Y F, Benjamin E J, MacMahon S. Prevention and control of cardiovascular disease in the rapidly changing economy of China. Circulation, 2016, 133(24): 2545-2560.
doi: 10.1161/CIRCULATIONAHA.115.008728 pmid: 27297347
[2]   Lu F X, Lu Z X, Bie X M, et al. Purification and characterization of a novel anticoagulant and fibrinolytic enzyme produced by endophytic bacterium Paenibacillus polymyxa EJS-3. Thrombosis Research, 2010, 126(5): e349-e355.
doi: 10.1016/j.thromres.2010.08.003
[3]   Wu J X, Zhao X Y, Pan R, et al. Glycosylated trypsin-like proteases from earthworm Eisenia fetida. International Journal of Biological Macromolecules, 2007, 40(5): 399-406.
doi: 10.1016/j.ijbiomac.2006.10.001
[4]   Yang J, Wang Y H, Jiang T F, et al. Depolymerized glycosaminoglycan and its anticoagulant activities from sea cucumber Apostichopus japonicus. International Journal of Biological Macromolecules, 2015, 72: 699-705.
doi: 10.1016/j.ijbiomac.2014.09.025 pmid: 25260572
[5]   Lee K S, Kim B Y, Yoon H J, et al. Secapin, a bee venom peptide, exhibits anti-fibrinolytic, anti-elastolytic, and anti-microbial activities. Developmental & Comparative Immunology, 2016, 63: 27-35.
[6]   Zhao T, Xiong J Q, Chen W, et al. Purification and characterization of a novel fibrinolytic enzyme from Cipangopaludina cahayensis. Iranian Journal of Biotechnology, 2021, 19(1): e2805.
[7]   Kim D W, Choi J H, Park S E, et al. Purification and characterization of a fibrinolytic enzyme from Petasites japonicus. International Journal of Biological Macromolecules, 2015, 72: 1159-1167.
doi: 10.1016/j.ijbiomac.2014.09.046
[8]   Katrolia P, Liu X L, Zhao Y Y, et al. Gene cloning, expression and homology modeling of first fibrinolytic enzyme from mushroom (Cordyceps militaris). International Journal of Biological Macromolecules, 2020, 146: 897-906.
doi: S0141-8130(19)34487-3 pmid: 31726136
[9]   Liang L, Ao L, Ma T, et al. Sulfated modification and anticoagulant activity of pumpkin (Cucurbita pepo, Lady Godiva) polysaccharide. International Journal of Biological Macromolecules, 2018, 106: 447-455.
doi: S0141-8130(17)32171-2 pmid: 28797813
[10]   Cao X Y, Che Z Q, Zhou B, et al. Investigations in ultrasound-assisted anticoagulant production by marine Bacillus subtilis ZHX. Ultrasonics Sonochemistry, 2020, 64: 104994.
doi: 10.1016/j.ultsonch.2020.104994
[11]   Kumar S S, Haridas M, Abdulhameed S. A novel fibrinolytic enzyme from marine Pseudomonas aeruginosa KU1 and its rapid in vivo thrombolysis with little haemolysis. International Journal of Biological Macromolecules, 2020, 162: 470-479.
doi: 10.1016/j.ijbiomac.2020.06.178
[12]   Yao Z, Kim J A, Kim J H. Characterization of a fibrinolytic enzyme secreted by Bacillus velezensis BS2 isolated from sea squirt jeotgal. Journal of Microbiology and Biotechnology, 2019, 29(3): 347-356.
doi: 10.4014/jmb.1810.10053
[13]   Souza F A S D, Sales A E, Costa e Silva P E, et al. Optimization of production, biochemical characterization and in vitro evaluation of the therapeutic potential of fibrinolytic enzymes from a new Bacillus amyloliquefaciens. Macromolecular Research, 2016, 24(7): 587-595.
doi: 10.1007/s13233-016-4089-2
[14]   Chandramohan M, Yee C Y, Kei Beatrice P H, et al. Production, characterization and optimization of fibrinolytic protease from Bacillus pseudomycoides strain MA 02 isolated from poultry slaughter house soils. Biocatalysis and Agricultural Biotechnology, 2019, 22: 101371.
doi: 10.1016/j.bcab.2019.101371
[15]   Al Farraj D A, Kumar T S J, Vijayaraghavan P, et al. Enhanced production, purification and biochemical characterization of therapeutic potential fibrinolytic enzyme from a new Bacillus flexus from marine environment. Journal of King Saud University - Science, 2020, 32(7): 3174-3180.
doi: 10.1016/j.jksus.2020.09.004
[16]   Astrup T, Müllertz S. The fibrin plate method for estimating fibrinolytic activity. Archives of Biochemistry and Biophysics, 1952, 40(2): 346-351.
pmid: 12997222
[17]   Lin H T V, Hwang P A, Lin T C, et al. Production of Bacillus subtilis-fermented red alga Porphyra dentata suspension with fibrinolytic and immune-enhancing activities. Bioscience, Biotechnology, and Biochemistry, 2014, 78(6): 1074-1081.
doi: 10.1080/09168451.2014.915726
[18]   Zeng W, Chen G G, Wu Y G, et al. Nonsterilized fermentative production of poly-γ-glutamic acid from cassava starch and corn steep powder by a thermophilic Bacillus subtilis. Journal of Chemical Technology & Biotechnology, 2018, 93(10): 2917-2924.
[19]   Toleco M R M, Duque S M M, Tan A G, et al. An optimized sustainable medium for the direct lactic acid fermentation of sago (Metroxylon sagu Rottb.) starch by Enterococcus faecium DMF78. International Food Research Journal, 2016, 23(3): 1274-1279.
[20]   Deepak V, Kalishwaralal K, Ramkumarpandian S, et al. Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology. Bioresource Technology, 2008, 99(17): 8170-8174.
doi: 10.1016/j.biortech.2008.03.018 pmid: 18430568
[21]   Krulwich T A, Sachs G, Padan E. Molecular aspects of bacterial pH sensing and homeostasis. Nature Reviews Microbiology, 2011, 9(5): 330-343.
doi: 10.1038/nrmicro2549 pmid: 21464825
[22]   Pan S H, Chen G G, Zeng J J, et al. Fibrinolytic enzyme production from low-cost substrates by marine Bacillus subtilis: process optimization and kinetic modeling. Biochemical Engineering Journal, 2019, 141: 268-277.
doi: 10.1016/j.bej.2018.11.002
[23]   Narasimhan M K, Chandrasekaran M, Rajesh M. Fibrinolytic enzyme production by newly isolated Bacillus cereus SRM-001 with enhanced in-vitro blood clot Lysis potential. The Journal of General and Applied Microbiology, 2015, 61(5): 157-164.
doi: 10.2323/jgam.61.157
[24]   Anusree M, Swapna K, Aguilar C N, et al. Optimization of process parameters for the enhanced production of fibrinolytic enzyme by a newly isolated marine bacterium. Bioresource Technology Reports, 2020, 11: 100436.
doi: 10.1016/j.biteb.2020.100436
[1] Bao-qi FENG,Jiao FENG,Miao ZHANG,Yang LIU,Rui CAO,Han-zhi YIN,Feng-xian QI,Zi-long LI,Shou-liang YIN. Screening of High Avermectin-producing Strains via Tn5 Transposon Mediated Mutagenesis[J]. China Biotechnology, 2021, 41(7): 32-41.
[2] LI Kai-xiu,SI Wei. Progress in the Treatment of Inflammatory Bowel Diseases by Exosomes Derived from Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(7): 66-73.
[3] ZHAO Xiao-yan,CHEN Yun-da,ZHANG Ya-qian,WU Xiao-yu,WANG Fei,CHEN Jin-yin. Site-directed Mutagenesis Improves the Thermostability of Trehalose Synthase TreS II from Myxococcus sp.V11[J]. China Biotechnology, 2020, 40(3): 79-87.
[4] SU Yong-jun,HU Die,HU Bo-chun,LI Chuang,WEN Zheng,ZHANG Chen,WU Min-chen. Improving the Enantioselectivity of an Epoxide Hydrolase towards p-Methylphenyl Glycidyl Ether by Site-directed Mutagenesis[J]. China Biotechnology, 2020, 40(3): 88-95.
[5] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[6] Ting-ting KAN,Xun-cheng ZONG,Yong-jun SU,Ting-ting WANG,Chuang LI,Die HU,Min-chen WU. Site-directed Mutagenesis of PvEH1 to Improve Its Catalytic Properties towards ortho-Methylphenyl Glycidyl Ether[J]. China Biotechnology, 2019, 39(6): 9-16.
[7] Yue WANG,Jiang-hua LI,Guo-cheng DU,Long LIU. Molecular Modification of L-amino Acid Deaminase and Optimization of α-ketoglutaric Acid Production by Whole-cell Biocatalysis[J]. China Biotechnology, 2019, 39(3): 56-64.
[8] REN Li-qiong,WU Jing,CHEN Sheng. Co-Expression of N-Acetyltransferase Enhances the Expression of Aspergillus nidulans α-Glucosidase in Pichia pastoris[J]. China Biotechnology, 2019, 39(10): 75-81.
[9] Gong CHENG,Si-ming JIAO,Li-shi REN,Cui FENG,Yu-guang DU. Preparation and Composition Analysis of Chitooligosaccharides with Low Degree of Deacetylation by Hydrolysis of Bacillus subtilis Chitosanase[J]. China Biotechnology, 2018, 38(9): 19-26.
[10] Fan SUN,Ling-qia SU,Kang ZHANG,Jing WU. D-psicose 3-epimerase Gene Overexpression in Bacillus subtilis and Immobilization of Cells[J]. China Biotechnology, 2018, 38(7): 83-88.
[11] Hao-yi MENG,Dan-yang LI,Zheng-yang SUN,Zhao-yong YANG,Zhi-fei ZHANG,Li-jie YUAN. Substrate-binding Site of Ubiquitous Mitochondrial Creatine Kinase from Homo sapiens[J]. China Biotechnology, 2018, 38(5): 24-32.
[12] ZHANG Ling,WANG Nan,JIN Lv-hua,LIN Rong,YANG Hai-lin. To Promote the Expression of Leucine Dehydrogenase in Bacillus subtilis via Dual-Promoter and Fermentation Research[J]. China Biotechnology, 2018, 38(12): 21-31.
[13] LI Xue-qing, YUAN Feng-jiau, CHENG Jian-qing, DONG Yun-hai, LI Jian-fang, WU Min-chen. Effect of Amino Acid H321 on the Enzymatic Properties of Hybrid β-Mannanase AuMan5Aloop[J]. China Biotechnology, 2017, 37(2): 48-53.
[14] TIAN Shu-cui, NIU Yan-ning, CHANG Zhong-yi, GAO Hong-liang, BU Guo-jian, JIN Ming-fei. The Streptoverticillium mobaraense Mutagenesis Using Atmospheric Pressure Plasma at Room Temperature (ARTP) Method[J]. China Biotechnology, 2016, 36(9): 47-53.
[15] JI Mei-ping, PANG Yan-bo, FU Li-li, NA Ri, GUO Jiu-feng, WANG Zhi-yong. Study Progress and Prospect on γ-poly Glutamic Acid Genetic Engineering[J]. China Biotechnology, 2016, 36(6): 107-118.