Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (6): 30-38    DOI: 10.13523/j.cb.2203051
    
Surface Display of Functional RBD of SARS-CoV-2 in Pichia pastoris
YU Lu1,HU Xuan1,ZHANG Xiao-juan1,2,NIU An-na1,ZHANG Xiao-peng1,**()
1. Institute of Biotechnology, Academy of Military Medical Science, Beijing 100071, China
2. Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
Download: HTML   PDF(4694KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To establish a high-throughput platform for drug discovery targeting receptor binding domain (RBD) of SARS-CoV-2, a surface display system was designed and constructed to deliver functional RBD to the surface of Pichia pastoris. Methods: Four anchor molecules were fused to RBD, and then were transformed into Pichia pastoris by using electroporation. The surface display efficiency of RBD was measured using flow cytometry, and the affinity of RBD binding to the ACE2 receptor was further determined. Results: RBD-Sed1p system exhibited the highest surface display efficiency of 70%. The binding affinity to ACE2 of RBD displayed on the cellular surface (KD=30.42 nmol/L) was close to that of RBD in solution (KD=16.00 nmol/L). Conclusion: A surface display system of RBD was successfully developed in Pichia pastoris, which can be used for high-throughput screening and evaluation of anti-COVID-19 drugs.



Key wordsSurface display      SARS-CoV-2      Pichia pastoris      Receptor binding domain(RBD)      Affinity     
Received: 23 March 2022      Published: 07 July 2022
ZTFLH:  Q789  
Corresponding Authors: Xiao-peng ZHANG     E-mail: zxp8565@aliyun.com
Cite this article:

YU Lu,HU Xuan,ZHANG Xiao-juan,NIU An-na,ZHANG Xiao-peng. Surface Display of Functional RBD of SARS-CoV-2 in Pichia pastoris. China Biotechnology, 2022, 42(6): 30-38.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2203051     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I6/30

Fig.1 Design and construction of plasmids for RBD surface display
Fig.2 Agarose gel electrophoresis for RBD surface display plasmids linearized by Sac(a) pMEX9K-RBD-Sed1p (b) pMEX9K-RBD-Sed1pS (c) pMEX9K-RBD-Aga2p (d) pMEX9K-RBD-GCW61
Fig.3 Colony PCR identification recombinant strains harboring RBD fragments(a) GS115/RBD-Sed1p (b) GS115/RBD-Sed1pS (c) GS115/RBD-Aga2p (d) GS115/RBD-GCW61. The theoretical MW of fragments were indicated using arrows
Fig.4 Immunofluorescence analysis of RBD surface display strains(a) GS115/RBD-Sed1p (b) GS115/RBD-Sed1pS (c) GS115/RBD-Aga2p (d) GS115/RBD-GCW61
Fig.5 Schematic diagram of GS115/RBD-Sed1p yeast surface display systems
Fig.6 Flow cytometry analysis for binding activity of GS115-RBD-Sed1p to ACE2
Fig.7 Binding affinity between RBD and ACE2 receptor(a) KinExA (b) SPR
Fig.8 Competitive binding assays of GS115-RBD-Sed1p to Nab(a) RBD/ACE2 (b) RBD/NAb/ACE2. Gray peak was negative control
[1]   Wang Q H, Zhang Y F, Wu L L, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 2020, 181(4): 894-904.e9.
doi: 10.1016/j.cell.2020.03.045
[2]   Wu L L, Chen Q, Liu K F, et al. Broad host range of SARS-CoV-2 and the molecular basis for SARS-CoV-2 binding to cat ACE2. Cell Discovery, 2020, 6: 68.
doi: 10.1038/s41421-020-00210-9
[3]   Ju B, Zhang Q, Ge J W, et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature, 2020, 584(7819): 115-119.
doi: 10.1038/s41586-020-2380-z
[4]   Chen H Y, Ullah J, Jia J R. Progress in Bacillus subtilis spore surface display technology towards environment, vaccine development, and biocatalysis. Journal of Molecular Microbiology and Biotechnology, 2017, 27(3): 159-167.
[5]   van Bloois E, Winter R T, Kolmar H, et al. Decorating microbes: surface display of proteins on Escherichia coli. Trends in Biotechnology, 2011, 29(2): 79-86.
doi: 10.1016/j.tibtech.2010.11.003 pmid: 21146237
[6]   Kuroda K, Ueda M. Arming technology in yeast-novel strategy for whole-cell biocatalyst and protein engineering. Biomolecules, 2013, 3(3): 632-650.
doi: 10.3390/biom3030632
[7]   Zhang Z, Liu J, Fan J, et al. Detection of catechol using an electrochemical biosensor based on engineered Escherichia coli cells that surface-display laccase. Analytica Chimica Acta, 2018, 1009: 65-72.
doi: S0003-2670(18)30072-2 pmid: 29422133
[8]   Peltomaa R, Benito-Peña E, Barderas R, et al. Phage display in the quest for new selective recognition elements for biosensors. ACS Omega, 2019, 4(7): 11569-11580.
doi: 10.1021/acsomega.9b01206 pmid: 31460264
[9]   Karbalaei M, Rezaee S A, Farsiani H. Pichia pastoris: a highly successful expression system for optimal synthesis of heterologous proteins. Journal of Cellular Physiology, 2020, 235(9): 5867-5881.
doi: 10.1002/jcp.29583 pmid: 32057111
[10]   Cherf G M, Cochran J R. Applications of yeast surface display for protein engineering. Methods, in Molecular Biology, 2015, 1319:155.
[11]   Lozanċić M, Hossain S A, Mrša V, et al. Surface display- an alternative to classic enzyme immobilization. Catalysts, 2019, 9(9): 728.
doi: 10.3390/catal9090728
[12]   Klis F M, Mol P, Hellingwerf K, et al. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiology Reviews, 2002, 26(3): 239-256.
doi: 10.1111/j.1574-6976.2002.tb00613.x
[13]   Yang N, Yu Z F, Jia D C, et al. The contribution of Pir protein family to yeast cell surface display. Applied Microbiology and Biotechnology, 2014, 98(7): 2897-2905.
doi: 10.1007/s00253-014-5538-5 pmid: 24493571
[14]   Dong J X, Xie X, He Y S, et al. Surface display and bioactivity of Bombyx mori acetylcholinesterase on Pichia pastoris. PLoS One, 2013, 8(8): e70451.
doi: 10.1371/journal.pone.0070451
[15]   Liu Y H, Huang L, Fu Y, et al. A novel process for phosphatidylserine production using a Pichia pastoris whole-cell biocatalyst with overexpression of phospholipase D from Streptomyces halstedii in a purely aqueous system. Food Chemistry, 2019, 274: 535-542.
doi: 10.1016/j.foodchem.2018.08.105
[16]   Sena R O, Carneiro C, Moura M V H, et al. Application of Rhizomucor miehei lipase-displaying Pichia pastoris whole cell for biodiesel production using agro-industrial residuals as substrate. International Journal of Biological Macromolecules, 2021, 189: 734-743.
doi: 10.1016/j.ijbiomac.2021.08.173
[17]   代敏, 纪昌涛, 汪小锋, 等. 疏棉状嗜热丝孢菌脂肪酶在毕赤酵母中的表面展示及酶学性质. 微生物学报, 2012, 52(7): 857-865.
[17]   Dai M, Ji C T, Wang X F, et al. Cell surface display of Thermomyces lanuginosus lipase in Pichia pastoris and its characterization. Acta Microbiologica Sinica, 2012, 52(7): 857-865.
[18]   Shaheen H H, Prinz B, Chen M T, et al. A dual-mode surface display system for the maturation and production of monoclonal antibodies in glyco-engineered Pichia pastoris. PLoS One, 2013, 8(7): e70190.
doi: 10.1371/journal.pone.0070190
[19]   Li Z S, Miao Y L, Yang J M, et al. Efficient improvement of surface displayed lipase from Rhizomucor miehei in PichiaPinkTM protease-deficient system. Protein Expression and Purification, 2021, 180: 105804.
doi: 10.1016/j.pep.2020.105804
[20]   Yang J M, Huang K, Xu X M, et al. Cell surface display of Thermomyces lanuginosus lipase in Pichia pastoris. Frontiers in Bioengineering and Biotechnology, 2020, 8: 544058.
doi: 10.3389/fbioe.2020.544058
[21]   Zhang L, Liang S L, Zhou X Y, et al. Screening for glycosylphosphatidylinositol-modified cell wall proteins in Pichia pastoris and their recombinant expression on the cell surface. Applied and Environmental Microbiology, 2013, 79(18): 5519-5526.
doi: 10.1128/AEM.00824-13 pmid: 23835174
[22]   Boder E T, Wittrup K D. Yeast surface display for screening combinatorial polypeptide libraries. Nature Biotechnology, 1997, 15(6): 553-557.
pmid: 9181578
[23]   Naqvi A A T, Fatima K, Mohammad T, et al. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: structural genomics approach. Biochimica et Biophysica Acta Molecular Basis of Disease, 2020, 1866(10): 165878.
doi: 10.1016/j.bbadis.2020.165878
[24]   Routhu N K, Cheedarla N, Bollimpelli V S, et al. SARS-CoV-2 RBD trimer protein adjuvanted with Alum-3M-052 protects from SARS-CoV-2 infection and immune pathology in the lung. Nature Communications, 2021, 12(1): 3587.
doi: 10.1038/s41467-021-23942-y
[25]   Walls A C, Fiala B, Schäfer A, et al. Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2. Cell, 2020, 183(5): 1367-1382, e17.
doi: 10.1016/j.cell.2020.10.043
[1] YANG Yi,ZHANG Qing-yun,MEI Kun-rong. Progress and Current Situation of SARS-CoV-2 Subunit Vaccine Development[J]. China Biotechnology, 2022, 42(5): 124-138.
[2] QIAN Man-yun,WANG Ji-wei,LI Hao-ze,WANG Rui-hua,LIU Yun,LI Ya-feng. Study on Protective Immunity Induced by Recombinant SARS-CoV-2 S1 and S Protein Vaccine[J]. China Biotechnology, 2022, 42(5): 106-116.
[3] LIU Ming-zhu,ZHANG Liang,GUO Fang,LI Chun,FENG Xu-dong. Construction of Yeast Surface Display System and Application in Cellulose Degrading[J]. China Biotechnology, 2022, 42(5): 91-99.
[4] YUN Tao,GONG Yue,GU Peng,XU Bing-bing,LI Jin,ZHAO Xi-chen. Present Situation and Prospect of International S&T Cooperation between China and Countries Participating in the “Belt and Road” Initiative to Combat COVID-19[J]. China Biotechnology, 2021, 41(7): 110-121.
[5] CHEN Chen,HU Jin-chao,CAO Shan-shan,MEN Dong. The Development of Antigen Testing for SARS-CoV-2[J]. China Biotechnology, 2021, 41(6): 119-128.
[6] SHI Rui,YAN Jing-hua. Research Progress of Neutralizing Antibody Drugs against SARS-CoV-2[J]. China Biotechnology, 2021, 41(6): 129-135.
[7] ZHANG Ling,CAO Xiao-dan,YANG Hai-xu,LI Wen-lei. The Application of Continuous Purification in Affinity Chromatography and Evaluation of Production Scale-up[J]. China Biotechnology, 2021, 41(6): 38-44.
[8] ZHANG Sai,WANG Gang,LIU Zhong-ming,LI Hui-jun,WANG Da-ming,QIAN Chun-gen. Development and Performance Evaluation of a Rapid Antigen Test for SARS-CoV-2[J]. China Biotechnology, 2021, 41(5): 27-34.
[9] FAN Yue-lei,WANG Yue,WANG Heng-zhe,LI Dan-dan,MAO Kai-yun. Research Progress of in Vitro Diagnostic Technologies for SARS-CoV-2[J]. China Biotechnology, 2021, 41(2/3): 150-161.
[10] TANG Yue-wei,LIU Zhi-ping. Drug-target Affinity Prediction Based on Deep Learning and Multi-layered Information Fusion[J]. China Biotechnology, 2021, 41(11): 40-47.
[11] WU Rui-jun,LI Zhi-fei,ZHANG Xin,PU Run,AO Yi,SUN Yan-rong. Development and Prospect of Antibody Drugs for SARS-CoV-2[J]. China Biotechnology, 2020, 40(5): 1-6.
[12] CEN Qian-hong,GAO Tong,REN Yi,LEI Han. Recombinant Saccharomyces cerevisiae Expressing Helicobacter pylori VacA Protein and Its Immunogenicity Analysis[J]. China Biotechnology, 2020, 40(5): 15-21.
[13] XIE Hua-ling,LV Lu-cheng,YANG Yan-ping. Patent Analysis of Global Coronavirus Vaccine[J]. China Biotechnology, 2020, 40(1-2): 57-64.
[14] PAN Tong-tong,CHEN Yong-ping. Research Progress of Key Techniques for Severe/Critical Type of Novel Coronavirus Pneumonia[J]. China Biotechnology, 2020, 40(1-2): 78-83.
[15] LIAO Xiao-yan,CHEN Li-li. The Progress in the Development of COVID-19 Vaccine[J]. China Biotechnology, 2020, 40(12): 8-17.