Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (1/2): 139-145    DOI: 10.13523/j.cb.2107055
Orginal Article     
Research Progress on Temperature Adaptation of Bacteriophage
LI Jin-hua,BAI Yu-fan,MA Chun-lan,JI Xiu-ling,WEI Yun-lin()
Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
Download: HTML   PDF(1048KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Bacteriophages are widely distributed in nature. They are a kind of viruses that infect only bacteria. Phages multiply rapidly and have very high specificity for host selection, and are less likely to cause host bacteria to develop resistance when they are used as an antibiotic replacement therapy for bacterial infections. Because it is strictly selected by parasitism, its proliferation process is affected not only by environmental factors (pH, ionic strength, temperature), but also by the host metabolic level. Among the external environmental factors, temperature has an important influence on phage activity, stability, preservation and evolution. In this paper, the research progress of phage in temperature adaptation mechanism was summarized. In addition, the research on phage adaptation evolution under temperatures stress was classified further, and thus will provide help for research in this field.



Key wordsBacteriophage      Bacterial      Temperature      Adaptation      Evolution     
Received: 25 July 2021      Published: 03 March 2022
ZTFLH:  Q819  
Corresponding Authors: Yun-lin WEI     E-mail: homework18@126.com
Cite this article:

LI Jin-hua,BAI Yu-fan,MA Chun-lan,JI Xiu-ling,WEI Yun-lin. Research Progress on Temperature Adaptation of Bacteriophage. China Biotechnology, 2022, 42(1/2): 139-145.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2107055     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I1/2/139

温度 /℃ 噬菌体(宿主) 衣壳形态 其他特点 基因组类型 参考文献
55~95 AP45(气生芽孢杆菌CEMTC656) 长尾噬菌体科 二十面体(60 nm) 长的尾巴(160 nm) dsDNA [12]
80 ID8(大肠杆菌C) 微小噬菌体科 二十面体 有包膜和衣壳结构 ssDNA [13]
60~70 Wc4(胡萝卜软腐果胶杆菌亚种KPM17) 肌尾噬菌体科 二十面体[(57.5±5.0)nm] 长不可收缩尾 [(97.3±3.6)nm] dsDNA [14]
CX5(阿托品杆菌WHG10001) 短尾噬菌体科 二十面体[(55.6±3.0)nm] 短不可收缩尾[(18.0±2)nm]
P-PSG-11(青枯雷尔氏菌) 短尾噬菌体科 二十面体[(42.7±2.6)nm] 短不可收缩尾[(12.0±2.3)nm]
40~60 PSM6(肠炎沙门氏菌) 肌尾噬菌体科 二十面体(72 nm) 短末端纤维细长的尾(122.0 nm) dsDNA [15]
40~50 vB_EcoM_F2(大肠杆菌) 肌尾噬菌体科 二十面体(60 nm) 可收缩尾(150.0 nm) dsDNA [16]
25~45 vB_SauS_SAP3(金黄色葡萄球菌D085)
vB_SauS_SH-St 15644(耐甲氧西林金黄色葡萄球菌)
长尾噬菌体科 二十面体[(60nm±5)nm]
二十面体(长:75.0 nm; 宽:40.0 nm)
长而灵活的尾[(170±5)nm]
长非收缩性尾(长:250 nm;宽:20 nm)
dsDNA [17-18]
20~50 vB-SdyS-ISF003(痢疾链球菌PTCC 1188) 长尾噬菌体科 二十面体[长:(70±3.0)nm;宽:(55±3.0)nm] 无收缩尾[(160±5.0)nm] dsDNA [19]
PH1(交替假单胞菌BH1) 短尾噬菌体科 二十面体(60.0 nm) 短尾 (26.0 nm) dsDNA [20]
25和37 øBp-AMP1(类鼻疽伯克氏菌K96243) 短尾噬菌体科 二十面体 不可收缩尾 dsDNA [21]
4~32 vB_PagS_AAS21(成团泛菌) 长尾噬菌体科 二十面体[(84.75±3.20)nm] 不可收缩,灵活的长尾[长:(173.59 ± 11.52)nm;宽:(10.27 ± 0.87) nm] dsDNA [22]
4~37 VMY22(蜡样芽孢杆菌) 短尾噬菌体科 二十面体(长:59.2 nm;宽:31.9 nm) 短尾(43.2 nm) dsDNA [4]
4~28 VSW-3(荧光假单胞菌) 短尾噬菌体科 二十面体(56 nm) 短尾(20 nm×12 nm) dsDNA [6]
4~25 VW-6和VW-6B(荧光假单胞菌) 长尾噬菌体科 二十面体(66.7 nm;61.1 nm) 长尾(长:233.3 nm;宽:8.3 nm。长:166.7 nm;宽:11.1 nm) dsDNA [7]
4~20 MYSP06(紫色杆菌MYB06) 长尾噬菌体科 二十面体(74 nm) 长尾(长:210 nm;宽:10 nm) dsDNA [5]
-20~4 PH1(交替假单胞菌BH1) 短尾噬菌体科 二十面体(60.0 nm) 短尾(26.0 nm) dsDNA [20]
vB-SdyS-ISF003(痢疾链球菌PTCC 1188) 长尾噬菌体科 二十面体[长:(70±3.0)nm;宽:(55±3.0)nm] 无收缩尾[(160±5.0)nm] dsDNA [19]
-12和8 9A(冷红科韦尔氏菌34H) 长尾噬菌体科 二十面体 长而灵活的尾 dsDNA [23]
Table 1 Distribution and main characteristics of phage at different temperature
[1]   王韧韬, 刘又宁. 噬菌体治疗细菌感染的临床应用与进展. 中华结核和呼吸杂志, 2020, 43(6):539-543.
[1]   Wang R T, Liu Y N. Phage therapy clinical application and progress in bacterial infections. Chinese Journal of Tuberculosis and Respiration, 2020, 43(6):539-543.
[2]   Sulakvelidze A. Bacteriophage: a new journal for the most ubiquitous organisms on Earth. Bacteriophage, 2011, 1(1):1-2.
doi: 10.4161/bact.1.1.15030 pmid: 21687529
[3]   Ye M, Sun M M, Huang D, et al. A review of bacteriophage therapy for pathogenic bacteria inactivation in the soil environment. Environment International, 2019, 129:488-496.
doi: 10.1016/j.envint.2019.05.062
[4]   Ji X L, Zhang C J, Fang Y, et al. Isolation and characterization of glacier VMY22, a novel lytic cold-active bacteriophage of Bacillus cereus. Virologica Sinica, 2015, 30(1):52-58.
doi: 10.1007/s12250-014-3529-4
[5]   Li M Y, Wang J L, Zhang Q, et al. Isolation and characterization of the lytic cold-active bacteriophage MYSP06 from the mingyong glacier in China. Current Microbiology, 2016, 72(2):120-127.
doi: 10.1007/s00284-015-0926-3
[6]   Qin K H, Ji X L, Zhang C J, et al. Isolation and characterization of wetland VSW-3, a novel lytic cold-active bacteriophage of Pseudomonas fluorescens. Canadian Journal of Microbiology, 2017, 63(2):110-118.
doi: 10.1139/cjm-2016-0368
[7]   Xiang Y Y, Wang S, Li J K, et al. Isolation and characterization of two lytic cold-active bacteriophages infecting Pseudomonas fluorescens from the Napahai plateau wetland. Canadian Journal of Microbiology, 2018, 64(3):183-190.
doi: 10.1139/cjm-2017-0572
[8]   李明源, 王继莲, 魏云林, 等. 明永冰川三株黄杆菌低温噬菌体的生物学特性研究. 生命科学研究 2014, 18(2):114-120.
[8]   Li M Y, Wang J L, Wei Y L, et al. Biological characteristics of three flavobacterium cold-active bacteriophages from mingyong glacier. Life Science Research, 2014, 18(2):114-120.
[9]   Fernández L, Gutiérrez D, García P, et al. The perfect bacteriophage for therapeutic applications:A quick guide. Antibiotics, 2019, 8(3):126.
doi: 10.3390/antibiotics8030126
[10]   Kassa T. Bacteriophages against pathogenic bacteria and possibilities for future application in Africa. Infection and Drug Resistance, 2021, 14:17-31.
doi: 10.2147/IDR.S284331
[11]   Jończyk E, Kłak M, Międzybrodzki R, et al. The influence of external factors on bacteriophages:review. Folia Microbiologica, 2011, 56(3):191-200.
doi: 10.1007/s12223-011-0039-8 pmid: 21625877
[12]   Morozova V, Bokovaya O, Kozlova Y, et al. A novel thermophilic Aeribacillus bacteriophage AP45 isolated from the Valley of Geysers, Kamchatka: genome analysis suggests the existence of a new genus within the Siphoviridae family. Extremophiles, 2019, 23(5):599-612.
doi: 10.1007/s00792-019-01119-2 pmid: 31376001
[13]   Whittington A C, Rokyta D R. Biophysical spandrels form a hot-spot for kosmotropic mutations in bacteriophage thermal adaptation. Journal of Molecular Evolution, 2019, 87(1):27-36.
doi: 10.1007/s00239-018-9882-4 pmid: 30564861
[14]   Kering K K, Zhang X X, Nyaruaba R, et al. Application of adaptive evolution to improve the stability of bacteriophages during storage. Viruses, 2020, 12(4):423.
doi: 10.3390/v12040423
[15]   黄景晓, 尚俊康, 陈慧敏, 等. 一株烈性沙门氏菌噬菌体的生物学特性及基因组分析. 生物技术通报, 2021, 37(6):136-146.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-1385
[15]   Huang J X, Shang J K, Chen H M, et al. Biological characterization and genome analysis of a lytic phage infecting Salmonella. Biotechnology Bulletin, 2021, 37(6):136-146.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-1385
[16]   魏炳栋, 丛聪, 于维, 等. 一株多重耐药大肠杆菌噬菌体的分离、鉴定、生物学特性及全基因组分析. 吉林农业大学学报, 2020,1-22. DOI: 10.13327/j.jjlau.2020.5773.
doi: 10.13327/j.jjlau.2020.5773
[16]   Wei B D, Con C, Yu W, et al. Isolation, identification, biological characteristics and whole genome analysis of a multi drug resistant Escherichia coli phage. Journal of Jilin Agricultural University, 2020,1-22. DOI: 10.13327/j.jjlau.2020.5773.
doi: 10.13327/j.jjlau.2020.5773
[17]   葛志毅, 韩生义, 曹小安, 等. 一株金黄色葡萄球菌噬菌体的分离鉴定与生物学特性. 微生物学通报, 2021, 48(4):1171-1181.
[17]   Ge Z Y, Han S Y, Cao X A, et al. Isolation and biological characterization of a bacteriophage against Staphylococcus aureus. Microbiology China, 2021, 48(4):1171-1181.
[18]   Ji J W, Liu Q, Wang R, et al. Identification of a novel phage targeting methicillin-resistant Staphylococcus aureus in vitro and in vivo. Microbial Pathogenesis, 2020, 149:104317.
doi: 10.1016/j.micpath.2020.104317
[19]   Shahin K, Bao H D, Komijani M, et al. Isolation, characterization, and PCR-based molecular identification of a Siphoviridae phage infecting Shigella dysenteriae. Microbial Pathogenesis, 2019, 131:175-180.
doi: 10.1016/j.micpath.2019.03.037
[20]   Liu Z Y, Wang M, Meng X, et al. Isolation and genome sequencing of a novel Pseudoalteromonas phage PH1. Current Microbiology, 2017, 74(2):212-218.
doi: 10.1007/s00284-016-1175-9
[21]   Shan J Y, Korbsrisate S, Withatanung P, et al. Temperature dependent bacteriophages of a tropical bacterial pathogen. Frontiers in Microbiology, 2014, 5:599.
[22]   Šimoliūniene M, Truncaite L, Petrauskaite E, et al. Pantoea agglomerans-infecting bacteriophage vB_PagS_AAS21: a cold-adapted virus representing a novel genus within the family Siphoviridae. Viruses, 2020, 12(4):479.
doi: 10.3390/v12040479
[23]   Colangelo-Lillis J R, Deming J W. Genomic analysis of cold-active Colwelliaphage 9A and psychrophilic phage-host interactions. Extremophiles, 2013, 17(1):99-114.
doi: 10.1007/s00792-012-0497-1 pmid: 23224375
[24]   Jian H H, Xu J, Xiao X, et al. Dynamic modulation of DNA replication and gene transcription in deep-sea filamentous phage SW1 in response to changes of host growth and temperature. PLoS One, 2012, 7(8):e41578. DOI: 10.1371/journal.pone.0041578.
doi: 10.1371/journal.pone.0041578
[25]   Meng C X, Li S T, Fan Q L, et al. The thermo-regulated genetic switch of deep-sea filamentous phage SW1 and its distribution in the Pacific Ocean. FEMS Microbiology Letters, 2020, 367(12):fnaa094.
doi: 10.1093/femsle/fnaa094
[26]   Žukauskiene E, Šimoliūniene M, Truncaite L, et al. Pantoea bacteriophage vB_PagS_AAS23: a singleton of the genus sauletekiovirus. Microorganisms, 2021, 9(3):668.
doi: 10.3390/microorganisms9030668
[27]   Holder K K, Bull J J. Profiles of adaptation in two similar viruses. Genetics, 2001, 159(4):1393-1404.
doi: 10.1093/genetics/159.4.1393 pmid: 11779783
[28]   Betancourt A J. Genomewide patterns of substitution in adaptively evolving populations of the RNA bacteriophage MS2. Genetics, 2009, 181(4):1535-1544.
doi: 10.1534/genetics.107.085837 pmid: 19189959
[29]   Lázaro E, Arribas M, Cabanillas L, et al. Evolutionary adaptation of an RNA bacteriophage to the simultaneous increase in the within-host and extracellular temperatures. Scientific Reports, 2018, 8:8080.
doi: 10.1038/s41598-018-26443-z pmid: 29795535
[30]   Hossain M T, Yokono T, Kashiwagi A. The single-stranded RNA bacteriophage qβ adapts rapidly to high temperatures: an evolution experiment. Viruses, 2020, 12(6):638.
doi: 10.3390/v12060638
[31]   Kashiwagi A, Sugawara R, Sano Tsushima F, et al. Contribution of silent mutations to thermal adaptation of RNA bacteriophage Qβ. Journal of Virology, 2014, 88(19):11459-11468.
doi: 10.1128/JVI.01127-14 pmid: 25056887
[32]   Kashiwagi A, Kadoya T, Kumasaka N, et al. Influence of adaptive mutations, from thermal adaptation experiments, on the infection cycle of RNA bacteriophage Qβ. Archives of Virology, 2018, 163(10):2655-2662.
doi: 10.1007/s00705-018-3895-6 pmid: 29869034
[33]   Zhang Q G, Buckling A. Antagonistic coevolution limits population persistence of a virus in a thermally deteriorating environment. Ecology Letters, 2011, 14(3):282-288.
doi: 10.1111/ele.2011.14.issue-3
[34]   Padfield D, Castledine M, Buckling A. Temperature-dependent changes to host-parasite interactions alter the thermal performance of a bacterial host. The ISME Journal, 2020, 14(2):389-398.
doi: 10.1038/s41396-019-0526-5
[35]   Cox J, Schubert A M, Travisano M, et al. Adaptive evolution and inherent tolerance to extreme thermal environments. BMC Evolutionary Biology, 2010, 10:75.
doi: 10.1186/1471-2148-10-75
[36]   Singhal S, Leon Guerrero C M, Whang S G, et al. Adaptations of an RNA virus to increasing thermal stress. PLoS One, 2017, 12(12):e0189602.
doi: 10.1371/journal.pone.0189602
[37]   Bayfield O W, Klimuk E, Winkler D C, et al. Cryo-EM structure and in vitro DNA packaging of a thermophilic virus with supersized T=7 capsids. PNAS, 2019, 116(9):3556-3561.
doi: 10.1073/pnas.1813204116 pmid: 30737287
[38]   崔自红, 季秀玲. 细菌-噬菌体对抗性共进化研究进展. 中国生物工程杂志, 2020, 40(1-2):140-145.
[38]   Cui Z H, Ji X L. Advances in bacteria-phage antagonistic coevolution. China Biotechnology, 2020, 40(1-2):140-145.
[1] MA Chun-lan,LI Jin-hua,BAI Yu-fan,WEI Yun-lin. Advances in Bacterial Adaptive Evolution under Heavy Metal Ion Stress[J]. China Biotechnology, 2022, 42(1/2): 182-190.
[2] GUO Fang,ZHANG Liang,FENG Xu-dong,LI Chun. Plant-derived UDP-glycosyltransferase and Its Molecular Modification[J]. China Biotechnology, 2021, 41(9): 78-91.
[3] CHEN Xiu-yue,ZHOU Wen-feng,HE Qing,SU Bing,ZOU Ya-wen. Preparation, Purification and Identification of Bacteriophage Qβ Virus-like Particles[J]. China Biotechnology, 2021, 41(7): 42-49.
[4] LI Bo,WANG Ze-jian,LIANG Jian-guang,LIU Ai-jun,LI Hai-dong. Breeding of High-yield Rifamycin SV Strain by Plasma Action Combined with Oxygen Restriction Model[J]. China Biotechnology, 2021, 41(2/3): 38-44.
[5] ZHU Xiao-jing,WANG Rui,ZHANG Xin-xin,JIN Jia-xin,LU Wen-long,DING Da-shun,HUO Cui-mei,LI Qing-mei,SUN Ai-jun,ZHUANG Guo-qing. Construction of MDV Recombinant Vaccine Strain Integrated F Gene Using Bacterial Artificial Chromosome Technique[J]. China Biotechnology, 2021, 41(10): 33-41.
[6] CHA Ya-ping, ZHU Mu-zi, LI Shuang. Research Progress on In Vivo Continuous Directed Evolution[J]. China Biotechnology, 2021, 41(1): 42-51.
[7] MENG Xiao-lin,PANG Xi-ming,WANG Jie. Agrobacterium-mediated Transformation and the Functions of Pks in Marine-derived Penicillium oxalicum[J]. China Biotechnology, 2020, 40(9): 11-17.
[8] WANG Xiao-li. The Age of Biosecurity: New Biotechnology Revolution and National Biosecurity Governance[J]. China Biotechnology, 2020, 40(9): 95-109.
[9] MEI Yu-wei,YANG Zi-yun,YU Fan,LONG Xu-wei. Recent Progress on Fermentation and Antibacterial Applications of Surfactin[J]. China Biotechnology, 2020, 40(5): 105-116.
[10] QIN Xu-ying,YANG Hong-jiang. Research Progress on Techniques for Separation, Purification of Bacteriophages[J]. China Biotechnology, 2020, 40(5): 78-83.
[11] CUI Zi-hong,JI Xiu-ling. Advances in Bacteria-Phage Antagonistic Coevolution[J]. China Biotechnology, 2020, 40(1-2): 140-145.
[12] ZHAO Jian-min,ZHANG Si-yuan. Review of Patented Bacteriophage Treatment Technology for Drug-Resistant Bacteria Infection[J]. China Biotechnology, 2020, 40(10): 104-111.
[13] TANG Xin,MAO Xin-fang,MA Bin-yun,GOU Ping. Antimicrobial Peptides: Current Status and Future Challenges[J]. China Biotechnology, 2019, 39(8): 86-94.
[14] SUN Si,QIU Yu-lan,YAN Ju-rong,YANG Jing,WU Guang-ying,WANG Lin,XU Wen-chun. Recombinant Plasmid pcDNA3-dnaJ Prime/DnaJ Protein Boost Immunization Induce Th1/Th17 Immune Responses and Protect Mice Against Pneumococcal Infection[J]. China Biotechnology, 2019, 39(12): 9-17.
[15] WANG Zhao-guan,WU Yang,QI Hao. Research Progress in Synthetic Diverse Mutant Libraries[J]. China Biotechnology, 2019, 39(11): 113-122.