Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (8): 86-94    DOI: 10.13523/j.cb.20190812
    
Antimicrobial Peptides: Current Status and Future Challenges
TANG Xin1,2,MAO Xin-fang3,MA Bin-yun2,GOU Ping1,**()
1 College of Life Science and Technology, Xinjiang University, ürümqi 830046, China;
2 Keck school of Medicine, University of Southern California, Los Angeles 90033, United States
3 School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
Download: HTML   PDF(1261KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Antimicrobial peptides (AMPs) are produced in various living organisms as first-line host defenses against potential pathogenic microbes in their surroundings. Pioneering studies showed that AMPs can directly interfere with the integrity of the bacterial cell membrane and cell wall though membrane-disruptive mechanism. In addition to interact with membrane, there are increasing evidence to indicate that AMPs have intracellular targets to achieve efficient killing, including nucleic acids binding, inhibiton of protein synthesis and protein-folding, inhibition of cell wall biosynthesis, inhibition of protease and cell division. Due to unique action mechanisms and broad-spectrum of activity, there are continued efforts in exploiting potential applications of AMPs in different area. However, some issues need to be resolved before AMPs be widely used, like AMPs stability, decreased antimicrobial activity and AMPs resistance. In this review, it will be mentioned that current knowledge and recent progress in AMPs action mechanisms, especially non-lytic features, mechanism of AMPs resistance and the potential problems associated with AMPs applications.



Key wordsAntimicrobial peptides      Non-membrane-disruptive mechanism      Antibacterial mechanism      Resistance     
Received: 08 January 2019      Published: 18 September 2019
ZTFLH:  Q51  
Corresponding Authors: Ping GOU     E-mail: gou__ping@sina.com
Cite this article:

TANG Xin,MAO Xin-fang,MA Bin-yun,GOU Ping. Antimicrobial Peptides: Current Status and Future Challenges. China Biotechnology, 2019, 39(8): 86-94.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190812     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I8/86

Fig.1 Schematic representation of the major pathways targeted by AMPs
[1]   Steiner H, Hultmark D, Engstr?m ? , et al. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature, 1981,292(5820):246-248.
[2]   Zasloff M . Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA, 1987,84:5449-5453.
[3]   Zasloff M . Antimicrobial peptides of multicellular organisms. Nature, 2002,415(6870):389-395.
[4]   Le C F, Fang C M, Sekaran S D . Beyond membrane-lytic: intracellular targeting mechanisms by antimicrobial peptides. Antimicrobial Agents and Chemotherapy, 2017,61(4):e02340-16.
[5]   Brogden K A . Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology, 2005,3(3):238-250.
[6]   Wang Y D, Kung C W, Chen J Y . Antiviral activity by fish antimicrobial peptides of epinecidin-1 and hepcidin 1-5 against nervous necrosis virus in medaka. Peptides, 2010,31(6):1026-1033.
doi: 10.1016/j.peptides.2010.02.025
[7]   Lupetti A, Van Dissel J, Brouwer C , et al. Human antimicrobial peptides’ antifungal activity against Aspergillus fumigatus. European Journal of Clinical Microbiology &Infectious Diseases, 2008,27(11):1125-1129.
[8]   Vizioli J, Salzet M . Antimicrobial peptides versus parasitic infections? Trends in Parasitology, 2002,18(11):475-476.
[9]   Hoskin D W, Ramamoorthy A . Studies on anticancer activities of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2008,1778(2):357-375.
[10]   Amer L S, Bishop B M, van Hoek M L . Antimicrobial and antibiofilm activity of cathelicidins and short, synthetic peptides against Francisella. Biochemical and Biophysical Research Communications, 2010,396(2):246-251.
[11]   Hilchie A L, Wuerth K, Hancock R E . Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nature Chemical Biology, 2013,9(12):761-768.
doi: 10.1038/NCHEMBIO.1393
[12]   Wang G, Li X, Wang Z . APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Research, 2015,44(D1):D1087-D1093.
[13]   Fan L, Sun J, Zhou M , et al. DRAMP: a comprehensive data repository of antimicrobial peptides. Scientific Reports, 2016,6:24482.
[14]   Di Luca M, Maccari G, Maisetta G , et al. BaAMPs: the database of biofilm-active antimicrobial peptides. Biofouling, 2015,31(2):193-199.
[15]   Wang G . Improved methods for classification, prediction, and design of antimicrobial peptides. Computational Peptidology, 2015, 43-66.
[16]   Meneguetti B T, Machado L d S, Oshiro K G , et al. Antimicrobial peptides from fruits and their potential use as biotechnological tools-a review and outlook. Frontiers in Microbiology, 2017,7:2136.
[17]   Wang G . Antimicrobial peptides: discovery, design and novel therapeutic strategies. 2 nd ed . UK: CABI, 2017: 1-261.
[18]   Scocchi M, Mardirossian M, Runti G , et al. Non-membrane permeabilizing modes of action of antimicrobial peptides on bacteria. Current Topics in Medicinal Chemistry, 2016,16(1):76-88.
[19]   Gaspar D, Veiga A S, Castanho M A . From antimicrobial to anticancer peptides. A review. Frontiers in Microbiology, 2013,4:294.
[20]   Reddy K, Yedery R, Aranha C . Antimicrobial peptides: premises and promises. International Journal of Antimicrobial Agents, 2004,24(6):536-547.
doi: 10.1016/j.ijantimicag.2004.09.005
[21]   Yang L, Harroun T A, Weiss T M , et al. Barrel-stave model or toroidal model? A case study on melittin pores. Biophysical Journal, 2001,81(3):1475-1485.
doi: 10.1016/S0006-3495(01)75802-X
[22]   Wu M, Maier E, Benz R , et al. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry, 1999,38(22):7235-7242.
[23]   Sengupta D, Leontiadou H, Mark A E , et al. Toroidal pores formed by antimicrobial peptides show significant disorder. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2008,1778(10):2308-2317.
[24]   Bechinger B, Gorr S U . Antimicrobial peptides: mechanisms of action and resistance. Journal of Dental Research, 2017,96(3):254-260.
[25]   Choi H, Rangarajan N, Weisshaar J C . Lights, camera, action! Antimicrobial peptide mechanisms imaged in space and time. Trends in Microbiology, 2016,24(2):111-122.
[26]   Patrzykat A, Friedrich C L, Zhang L , et al. Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrobial Agents and Chemotherapy, 2002,46(3):605-614.
[27]   Schneider T, Kruse T, Wimmer R , et al. Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science, 2010,328(5982):1168-1172.
[28]   Yount N Y, Bayer A S, Xiong Y Q , et al. Advances in antimicrobial peptide immunobiology. Peptide Science: Original Research on Biomolecules, 2006,84(5):435-458.
[29]   Lan Y, Ye Y, Kozlowska J , et al. Structural contributions to the intracellular targeting strategies of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2010,1798(10):1934-1943.
[30]   Gottschalk S, Thomsen L E . The interaction of antimicrobial peptides with the membrane and intracellular targets of Staphylococcus aureus investigated by ATP leakage, DNA-binding analysis, and the expression of a LexA-controlled gene, recA. Antimicrobial Peptides, 2017, 297-305.
[31]   Sharma A, Pohane A A, Bansal S , et al. Cell penetrating synthetic antimicrobial peptides (SAMPs) exhibiting potent and selective killing of Mycobacterium by targeting its DNA. Chemistry-A European Journal, 2015,21(9):3540-3545.
[32]   Scocchi M, Tossi A, Gennaro R . Proline-rich antimicrobial peptides: converging to a non-lytic mechanism of action. Cellular and Molecular Life Sciences, 2011,68(13):2317-2330.
doi: 10.1007/s00018-011-0721-7
[33]   Boman H G, Agerberth B, Boman A . Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infection and Immunity, 1993,61(7):2978-2984.
[34]   Otvos L, O I, Rogers M E , et al. Interaction between heat shock proteins and antimicrobial peptides. Biochemistry, 2000,39(46):14150-14159.
[35]   Kragol G, Lovas S, Varadi G , et al. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry, 2001,40(10):3016-3026.
[36]   Chesnokova L S, Slepenkov S V, Witt S N . The insect antimicrobial peptide, l-pyrrhocoricin, binds to and stimulates the ATPase activity of both wild-type and lidless DnaK. FEBS Letters, 2004,565(1-3):65-69.
[37]   Koch A L . Bacterial wall as target for attack past, present, and future research. Clinical Microbiology Reviews, 2003,16(4):673-687.
[38]   Essig A, Hofmann D, Münch D , et al. Copsin, a novel peptide-based fungal antibiotic interfering with the peptidoglycan synthesis. Journal of Biological Chemistry, 2014: jbc. M114. 599878.
[39]   Br?t z H, Bierbaum G, Leopold K , et al. The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrobial Agents and Chemotherapy, 1998,42(1):154-160.
[40]   Breukink E, Kruijff B . Lipid II as a target for antibiotics. Nature Reviews Drug Discovery, 2006,5(4):321-323.
[41]   Gusman H, Grogan J, Kagan H M , et al. Salivary histatin 5 is a potent competitive inhibitor of the cysteine proteinase clostripain. FEBS Letters, 2001,489(1):97-100.
[42]   Puri S, Edgerton M . How does it kill-understanding the candidacidal mechanism of salivary Histatin 5. Eukaryotic Cell, 2014,13(8):958-964.
doi: 10.1128/EC.00095-14
[43]   Pratt Z L, Chen B, Czuprynski C J , et al. Characterization of osmotic-induced filaments of Salmonella enterica. Applied and Environmental Microbiology, 2012,78(18):6704-6713.
doi: 10.1128/AEM.01784-12
[44]   Ishikawa M, Kubo T, Natori S . Purification and characterization of a diptericin homologue from Sarcophaga peregrina (flesh fly). Biochemical Journal, 1992,287(2):573-578.
[45]   Bi E, Lutkenhaus J . Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring. Journal of Bacteriology, 1993,175(4):1118-1125.
[46]   Yadavalli S S, Carey J N, Leibman R S , et al. Antimicrobial peptides trigger a division block in Escherichia coli through stimulation of a signalling system. Nature Communications, 2016,7:12340.
[47]   Ho Y H, Shah P, Chen Y W , et al. Systematic analysis of intracellular-targeting antimicrobial peptides, bactenecin 7, hybrid of pleurocidin and dermaseptin, proline-arginine-rich peptide, and lactoferricin B, by using Escherichia coli proteome microarrays. Molecular & Cellular Proteomics 2016: mcp. M115. 054999.
[48]   Gunn J S, Ryan S S, Van Velkinburgh J C , et al. Genetic and functional analysis of a PmrA-PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar typhimurium. Infection and Immunity, 2000,68(11):6139-6146.
[49]   Andersson D I, Hughes D, Kubicek-Sutherland J Z . Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resistance Updates, 2016,26:43-57.
[50]   Lofton H, Anwar N, Rhen M , et al. Fitness of Salmonella mutants resistant to antimicrobial peptides. Journal of Antimicrobial Chemotherapy, 2014,70(2):432-440.
[51]   Sun S, Negrea A, Rhen M , et al. Genetic analysis of colistin resistance in Salmonella enterica serovar typhimurium. Antimicrobial Agents and Chemotherapy, 2009,53(6):2298-2305.
[52]   Moffatt J H, Harper M, Harrison P , et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrobial Agents and Chemotherapy, 2010,54(12):4971-4977.
[53]   Chikindas M L, Weeks R, Drider D , et al. Functions and emerging applications of bacteriocins. Current Opinion in Biotechnology, 2018,49:23-28.
[54]   Santos J C P, Sousa R C S, Otoni C G , et al. Nisin and other antimicrobial peptides: production, mechanisms of action, and application in active food packaging. Innovative Food Science & Emerging Technologies, 2018,48:179-194.
[55]   Dutta P, Das S . Mammalian antimicrobial peptides: promising therapeutic targets against infection and chronic inflammation. Current Topics in Medicinal Chemistry, 2016,16(1):99-129.
[56]   Landman D, Georgescu C, Martin D A , et al. Polymyxins revisited. Clinical Microbiology Reviews, 2008,21(3):449-465.
[57]   Marr A K, Gooderham W J, Hancock R E . Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Current Opinion in Pharmacology, 2006,6(5):468-472.
doi: 10.1016/j.coph.2006.04.006
[58]   da Silva Malheiros P, Daroit D J, Brandelli A . Food applications of liposome-encapsulated antimicrobial peptides. Trends in Food Science & Technology, 2010,21(6):284-292.
[59]   Keymanesh K, Soltani S, Sardari S . Application of antimicrobial peptides in agriculture and food industry. World Journal of Microbiology and Biotechnology, 2009,25(6):933-944.
[60]   Kokoza V, Ahmed A, Cho W L , et al. Engineering blood meal-activated systemic immunity in the yellow fever mosquito, Aedes aegypti. Proceedings of the National Academy of Sciences, 2000,97(16):9144-9149.
[61]   Kokoza V, Ahmed A, Shin S W , et al. Blocking of Plasmodium transmission by cooperative action of Cecropin A and Defensin A in transgenic Aedes aegypti mosquitoes. Proceedings of the National Academy of Sciences, 2010,107(18):8111-8116.
[62]   Kerr D E, Plaut K, Bramley A J , et al. Lysostaphin expression in mammary glands confers protection against staphylococcal infection in transgenic mice. Nature Biotechnology, 2001,19(1):66-70.
[63]   Fan W, Plaut K, Bramley A , et al. Adenoviral-mediated transfer of a lysostaphin gene into the goat mammary gland. Journal of Dairy Science, 2002,85(7):1709-1716.
doi: 10.3168/jds.S0022-0302(02)74244-6
[64]   王曦, 陈熙明, 浦铜良 . 溶葡球菌酶高效表达与应用. 中国生物工程杂志 2017,37(9):118-125.
[64]   Wang X, Chen X M, Pu T L . Progress on high efficient expression and application of lysostaphin. China Biotechnology 2017,37(9):118-125.
[65]   Sousa D A, Mulder K C, Nobre K S , et al. Production of a polar fish antimicrobial peptide in Escherichia coli using an ELP-intein tag. Journal of Biotechnology, 2016,234:83-89.
[66]   Tang X . Elastin-like polypeptides as thermosensitive polymer system. Advanced Materials Research, 2014,898:296-299.
[67]   Paria A, Vinay T, Gupta S K , et al. Antimicrobial peptides: a promising future alternative to antibiotics in aquaculture. World Aquculture, 2018: 67-69.
[68]   Cheng A C, Lin H L, Shiu Y L , et al. Isolation and characterization of antimicrobial peptides derived from Bacillus subtilis E20-fermented soybean meal and its use for preventing Vibrio infection in shrimp aquaculture. Fish Shellfish Immunology, 2017,67:270-279.
[69]   Lai Y, Gallo R L . AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends in Immunology, 2009,30(3):131-141.
doi: 10.1016/j.it.2008.12.003
[70]   唐馨, 王慧, 热西力 , 等. 新疆家蚕抗菌肽在毕赤酵母中表达及活性研究. 生物技术, 2011,21(2):26-31.
[70]   Tang X, Wang H, Kelaimu R X L , et al. Molecular cloning, expression of Cecropin -XJ gene from silkworm and antibacterial activity in Pichia pastoris. Biotechnology, 2011,21(2):26-31.
[71]   唐馨, 毛新芳, 热西力 , 等. 黄粉虫抗菌肽 TmAMP3 在大肠杆菌中的高效表达及活性检测. 昆虫学报, 2011,54(10):1111-1117.
[71]   Tang X, Mao X F, Kelaimu R X L , et al. High-level expression and function assay of antimicrobiol peptide TmAMP3 of Tenebrio molitor (Tenebrionidae, Coleoptera) in Escherichia coli. Acta Entomologica Sinica, 2011,54(10):1111-1117.
[72]   Yeaman M R, Yount N Y . Mechanisms of antimicrobial peptide action and resistance. Pharmacological Reviews, 2003,55(1):27-55.
[1] DONG Xue-ying,LIANG Kai,YE Ke-ying,ZHOU Ce-fan,TANG Jing-feng. Advances in the Regulation of Receptor Tyrosine Kinase on Autophagy[J]. China Biotechnology, 2021, 41(5): 72-78.
[2] DAI Qi-nan,ZHANG Jing-hong. Advances in Molecular Mechanisms Related to Tumor Multi-drug Resistance, Autophagy, DNA Repair and Tumor Stem Cells[J]. China Biotechnology, 2020, 40(4): 69-77.
[3] Pan-hong ZHANG,Lian-lian LI,Xiu-mei ZHANG,Jia-jun CUI,Yin-jie JIANG. Advances in the Relationship Between microRNA and Chemotherapy Resistance of Lung Cancer[J]. China Biotechnology, 2019, 39(7): 79-84.
[4] ZENG Qiang,MENG Qiu-cheng,DENG Li-hua,LI Jin-jiang,YU Jiang-hui,WENG Lu-shui,XIAO Guo-ying. Identification and Analysis of Important Phenotypes of E1C608 with Glyphosate Resistance and Lepidopteran Resistance in Rice[J]. China Biotechnology, 2019, 39(11): 31-38.
[5] LI Wen,CHEN Jie,HU Wei-nan,QI Ya-yun,FU Yi-hong,LIU Jia-min,WANG Zhen-chao,OUYANG Gui-ping. Research Advances in the Study of EGFR Mutations Resistance and Its Small Molecule Inhibitors[J]. China Biotechnology, 2019, 39(10): 97-104.
[6] Xiao-yong ZHANG,Qian-cheng LUO. Establishment and Clinical Application of LNA-PCR Assay Detecting Hepatitis B Virus Adefovir Dipivoxil Resistance[J]. China Biotechnology, 2018, 38(9): 48-54.
[7] Jun-jie ZHAO,Long ZHANG,Liang WANG,Xu-sheng CHEN,Zhong-gui MAO. Breeding and Physiological Characteristics of ε-Polylysine High-Producing Strain with Double Antibiotic Resistance[J]. China Biotechnology, 2018, 38(8): 59-68.
[8] Zhong-yang YE,Huai-yu QIU,Bing-hua ZHU,Ze LI,Ye ZHU,Li-gui WANG. Research Progress of sRNA Regulates the Expression of Genes in Related with Bacterial Resistance[J]. China Biotechnology, 2018, 38(7): 89-93.
[9] Min YAO,Shu-hua ZHU,Fo-sheng LI,Shi-yan ZHANG,Lin TANG. Analysis of Salt Tolerance and Insect Resistance of Transgenic Tobacco Expressing AtCYSa from Arabidopsis[J]. China Biotechnology, 2018, 38(4): 8-16.
[10] Jia-wei ZENG,Guo-feng HOU,Ji-ping ZHENG,Nou YANG,Ji-feng ZENG,Gui-ying GUO. The Progress of CRISPR/Cas System Used As Antimicrobials[J]. China Biotechnology, 2018, 38(11): 59-65.
[11] Jia-ao GE,Chang LIU,Jian-gang GONG,Yan-qin LIU. Research Progress of Antibacterial Cyclopeptides[J]. China Biotechnology, 2018, 38(11): 76-83.
[12] GAO Hong-jiang, LI Sheng-yan, WANG Hai, LIN Feng, ZHANG Chun-yu, LANG Zhi-hong. Progress on Function and Biosynthesis of Benzoxazinoids[J]. China Biotechnology, 2017, 37(8): 104-109.
[13] SHAN hong-yu, LIU Ren-ze, HAO Meng-qi, DONG Xiao-yu, GUO Chang-hong, GUO Dong-lin. Phytoferritin and the Response to Oxidative Stress[J]. China Biotechnology, 2017, 37(2): 121-126.
[14] YU Xiao-dan, WU Xiu-xiu, YAO Dong-sheng, LIU Da-ling, XIE Chun-fang. Trypsin-resistant Improvement of Bacillus subtilis β-1,4-endoxylanase by Rational Design Based on Molecular Structure Evaluation[J]. China Biotechnology, 2016, 36(8): 80-88.
[15] LIU Shuai, QIU Jin-kui, NIAN Hong-juan. Study on Aluminum Resistant Capacity of 14-3-3 Protein from Cryptococcus humicola[J]. China Biotechnology, 2016, 36(7): 27-33.