Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (11): 56-66    DOI: 10.13523/j.cb.2005012
    
Comparison of Genomic and Infection Characteristics of Coronavirus
CHENG Zi-zhao1,CHEN Chu-chu1,YING Lei2,LI Xiao-kun1,HUANG Zhi-feng1**()
1 School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
2 School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325035, China
Download: HTML   PDF(5578KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Coronavirus is a kind of pathogen that can cause respiratory and digestive diseases. At present, the understanding of coronavirus is not deep enough, and the similarities and differences between SARS-CoV-2 and other human coronaviruses in biological characteristics, infection mechanism, epidemiology and clinical characteristics are not clear. By summarizing the characteristics of several coronaviruses including SARS-CoV-2, and analyzes the susceptibility and prognosis of SARS-CoV-2 in special population, so as to provide reference for clinical research and differential diagnosis.



Key wordsCoronavirus      Genome structure      Infection mechanism      Epidemiology      Clinical characteristics     
Received: 07 May 2020      Published: 11 December 2020
ZTFLH:  Q939.4  
Corresponding Authors: Zhi-feng HUANG     E-mail: hzf@wmu.edu.cn
Cite this article:

CHENG Zi-zhao,CHEN Chu-chu,YING Lei,LI Xiao-kun,HUANG Zhi-feng. Comparison of Genomic and Infection Characteristics of Coronavirus. China Biotechnology, 2020, 40(11): 56-66.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2005012     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I11/56

病毒名称 种属及亚群 基因组长度(bp) GC含量(%) 发现时间 参考文献
HCoV-229E α冠状病毒 27 317 38 1966 [3]
HCoV-NL63 α冠状病毒 27 553 34 2004 [4-5]
HCoV-OC43 β冠状病毒A亚群 30 738 37 1967 [6-7]
HCoV-HKU1 β冠状病毒A亚群 29 926 32 2005 [8-9]
SARS-CoV β冠状病毒B亚群 29 727 41 2002 [10-11]
MERS-CoV β冠状病毒C亚群 29 809 41 2012 [12]
SARS-CoV-2 β冠状病毒B亚群 29 891 38 2019 [13]
Table1 Basic information of various coronaviruses
Fig.1 Genome map of various coronaviruses The complete coronavirus genome includes 5'leading sequence, open reading frame 1a/b, spinous process genes (S), envelope genes (E), membrane genes (M), nucleocapsid genes (N) and a series of auxiliary protein genes. The open reading frame 1a/b accounts for about 2/3 of the whole genome and encodes 16 nonstructural proteins (nsp1 to nsp16). The arrows indicate 15 restriction sites
病毒名称 受体 主要分布器官 参考文献
HCoV-229E APN 肠、肺、肾上皮细胞 [30]
HCoV-NL63 ACE2 肺、肠、鼻、口腔黏膜和鼻咽非角化鳞状上皮基底层 [31-32]
HCoV-OC43 9-O-Ac-Sia 除肺外不详 [33]
HCoV-HKU1 9-O-Ac-Sia 除肺外不详 [34]
SARS-CoV ACE2 肺、肠、鼻、口腔黏膜和鼻咽非角化鳞状上皮基底层 [32-35]
MERS-CoV DDP-4 血管、肺、脾、胰、肾、肠 [36-37]
SARS-CoV-2 ACE2 肺、肠、鼻、口腔黏膜和鼻咽非角化鳞状上皮基底层 [32]
Table 2 Various coronaviruses and their functional receptors
病毒 易感人群 季节特点 症状 参考文献
HCoV-229E 人群普遍易感 冬春季季节性流行 类似于普通感冒 [82-84]
HCoV-NL63 儿童、老年人和免疫功能
低下的呼吸系统疾病患者
冬春季季节性流行 类似于普通感冒 [5, 85]
HCoV-OC43 儿童和老年人 冬春季季节性流行 类似于普通感冒 [6-7]
HCoV-HKU1 儿童 冬春季季节性流行 类似于普通感冒,感染者易诱发癫痫 [8, 86-87]
SARS-CoV 人群普遍易感 无季节特点 发热、肌痛、头痛、全身不适和发冷,随后进展为干咳、呼吸困难和呼吸衰竭 [66-67, 71]
MERS-CoV 人群普遍易感 无季节特点 发热、咳嗽、发冷、肌痛、关节痛、重度肺炎、急性呼吸窘迫综合征(ARDS)、败血性休克、肾衰竭 [72-73]
SARS-CoV-2 人群普遍易感 无季节特点 乏力、肌痛、发热、呼吸困难和干咳,可迅速发展为 ARDS、败血性休克、代谢性酸中毒及凝血功能障碍 [74-77]
Table 3 Epidemiological and clinical characteristics of various coronaviruses
[1]   Worldometer. COVID-19 Coronavirus Pandemi. [2020-08-18]. https://www.worldometers.info/coronavirus/?from=singlemessage#countries.
[2]   Neuman B W, Adair B D, Yoshioka C, et al. Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. J Virol, 2006,80(16):7918-7928.
doi: 10.1128/JVI.00645-06 pmid: 16873249
[3]   Hamre D, Procknow J J. A new virus isolated from the human respiratory tract. Proceedings of the Society for Experimental Biology & Medicine, 1966,121(1):190-193.
[4]   Pyrc K, Jebbink M F, Berkhout B, et al. Genome structure and transcriptional regulation of human coronavirus NL63. Virol J, 2004,1:7.
pmid: 15548333
[5]   Van der Hoek L, Pyrc K, Berkhout B. Human coronavirus NL63, a new respiratory virus. FEMS Microbiology Reviews, 2006,30(5):760-773.
doi: 10.1111/j.1574-6976.2006.00032.x pmid: 16911043
[6]   胡琴, 谭文杰. 人冠状病毒HCoV-OC43的研究进展. 中华预防医学杂志, 2013,47(7):661-664.
[6]   Hu Q, Tan W J. Research progress of human coronavirus HCoV-OC43. Chinese Journal of Preventive Medicine, 2013,47(7):661-664.
[7]   Mcintosh K, Dees J H, Becker B W, et al. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc Natl Acad Sci USA, 1967,57(4):933-940.
doi: 10.1073/pnas.57.4.933 pmid: 5231356
[8]   Woo P, Lau S, Yip C, et al. More and more coronaviruses: Human coronavirus HKU1. Viruses, 2009,1(1):57-71.
doi: 10.3390/v1010057 pmid: 21994538
[9]   刘培林, 史蕾, 顾大勇, 等. 人冠状病毒HCoV-HKU1研究进展. 中国公共卫生, 2017,33(8):1264-1266.
[9]   Liu P L, Shi L, Gu D Y, et al. Research progress of human coronavirus HCoV-HKU1. Chin J Publ Heal, 2017,33(8):1264-1266.
[10]   Rota P A, Oberste M S, Monroe S S, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science, 2003,300(5624):1394-1399.
pmid: 12730500
[11]   Weiss S R, Leibowitz J L. Coronavirus pathogenesis. Adv Virus Res, 2011,81:85-164.
pmid: 22094080
[12]   Zaki A M, Boheemen S V, Bestebroer T M, et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med, 2012,367(19):1814-1820.
doi: 10.1056/NEJMoa1211721 pmid: 23075143
[13]   Chan J F, Kok K H, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect, 2020,9(1):221-236.
doi: 10.1080/22221751.2020.1719902 pmid: 31987001
[14]   Han Q, Lin Q, Jin S, et al. Coronavirus 2019-nCoV: A brief perspective from the front line. J Infect, 2020,80(4):373-377.
doi: 10.1016/j.jinf.2020.02.010 pmid: 32109444
[15]   Oong X Y, Ng K T, Takebe Y, et al. Identification and evolutionary dynamics of two novel human coronavirus OC43 genotypes associated with acute respiratory infections: phylogenetic, spatiotemporal and transmission network analyses. Emerg Microbes Infect, 2017,6(1):e3.
doi: 10.1038/emi.2016.132 pmid: 28050020
[16]   Pyrc K, Berkhout B, van der Hoek L. The novel human coronaviruses NL63 and HKU1. J Virol, 2007,81(7):3051-3057.
doi: 10.1128/JVI.01466-06 pmid: 17079323
[17]   Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol, 2020,92(4):418-423.
pmid: 31967327
[18]   Fehr A R, Perlman S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol Biol, 2015,1282:1-23.
doi: 10.1007/978-1-4939-2438-7_1 pmid: 25720466
[19]   GISAID. GISAID EpiCoV Database.[2020-08-18]. https://db.cngb.org/gisaid/.
[20]   Lokman S M, Rasheduzzaman M, Salauddin A, et al. Exploring the genomic and proteomic variations of SARS-CoV-2 spike glycoprotein: A computational biology approach. Infect Genet Evol, 2020,84:104389.
doi: 10.1016/j.meegid.2020.104389 pmid: 32502733
[21]   Tang X, Wu C, Li X, et al. On the origin and continuing evolution of SARS-CoV-2. Microbiology, 2020,7(6):1012-1023.
[22]   Korber B, Fischer W M, Gnanakaran S, et al. Tracking changes in SARS-CoV-2 spike: Evidence that D614G increases infectivity of the COVID-19 virus. Cell, 2020,18(4):812-827.
[23]   Tortorici M A, Walls A C, Lang Y, et al. Structural basis for human coronavirus attachment to sialic acid receptors. Nat Struct Mol Biol, 2019,26(6):481-489.
pmid: 31160783
[24]   Li Z J, Tomlinson A C, Wong A H, et al. The human coronavirus HCoV-229E S-protein structure and receptor binding. [2020-08-18]. https://elifesciences.org/articles/51230
[25]   Vennema H, Godeke G J, Rossen W A J, et al. Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. The EMBO Journal, 1996,15(8):2020-2028.
pmid: 8617249
[26]   Wilson L, McKinlay C, Gage P, et al. SARS coronavirus E protein forms cation-selective ion channels. Virology, 2004,330(1):322-331.
pmid: 15527857
[27]   Yount B, Denison M R, Weiss S R, et al. Systematic assembly of a full-length infectious cDNA of mouse hepatitis virus strain A59. J Virol, 2002,76(21):11065-11078.
doi: 10.1128/jvi.76.21.11065-11078.2002 pmid: 12368349
[28]   Schelle B, Karl N, Ludewig B, et al. Selective replication of coronavirus genomes that express nucleocapsid protein. J Virol, 2005,79(11):6620-6630.
doi: 10.1128/JVI.79.11.6620-6630.2005 pmid: 15890900
[29]   Wurm T, Chen H, Hodgson T, et al. Localization to the nucleolus is a common feature of coronavirus nucleoproteins, and the protein may disrupt host cell division. J Virol, 2001,75(19):9345-9356.
[30]   Yeager C L, Ashmun R A, Williams R K, et al. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature, 1992,357(6377):420-422.
pmid: 1350662
[31]   Hofmann H, Pyrc K, van der Hoek L, et al. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci USA, 2005,102(22):7988-7993.
doi: 10.1073/pnas.0409465102 pmid: 15897467
[32]   Wu C. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCoV, in the nasal tissue. [2020-8-18]. https://www.medrxiv.org/content/10.1101/2020.02.11.20022228v2.
[33]   Hulswit R J G, Lang Y, Bakkers M J G, et al. Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A. Proc Natl Acad Sci USA, 2019,116(7):2681-2690.
[34]   Huang X, Dong W, Milewska A, et al. Human coronavirus HKU1 spike protein uses O-acetylated sialic acid as an attachment receptor determinant and employs hemagglutinin-esterase protein as a receptor-destroying enzyme. J Virol, 2015,89(14):7202-7213.
doi: 10.1128/JVI.00854-15 pmid: 25926653
[35]   Li W H, Moore M J, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003,426(6965):450-454.
doi: 10.1038/nature02145 pmid: 14647384
[36]   Raj V S, Mou H H, Smits S L, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 2013,495(7440):251-254.
pmid: 23486063
[37]   Lambeir A M, Durinx C, Scharpé S, et al. Dipeptidyl-peptidase IV from bench to bedside: An update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crc Critical Reviews in Clinical Laboratory Sciences, 2003,40(3):209-294.
doi: 10.1080/713609354 pmid: 12892317
[38]   Yeager C L, Ashmun R A, Williams R K, et al. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature, 1992,357(6377):420-422.
doi: 10.1038/357420a0 pmid: 1350662
[39]   Kawase M, Shirato K, Matsuyama S, et al. Protease-mediated entry via the endosome of human coronavirus 229E. J Virol, 2009,83(2):712-721.
pmid: 18971274
[40]   Bertram S, Dijkman R, Habjan M, et al. TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. J Virol, 2013,87(11):6150-6160.
doi: 10.1128/JVI.03372-12 pmid: 23536651
[41]   Milewska A, Zarebski M, Nowak P, et al. Human coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells. J Virol, 2014,88(22):13221-13230.
doi: 10.1128/JVI.02078-14 pmid: 25187545
[42]   Bakkers M J, Lang Y F, Feitsma L J, et al. Betacoronavirus adaptation to humans involved progressive loss of hemagglutinin-esterase lectin activity. Cell Host Microbe, 2017,21(3):356-366.
pmid: 28279346
[43]   Vlasak R, Luytjes W, Spaan W, et al. Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. Proc Natl Acad Sci USA, 1988,85(12):4526-4529.
doi: 10.1073/pnas.85.12.4526 pmid: 3380803
[44]   Lim Y X, Ng Y L, Tam J P, et al. Human coronaviruses: A review of virus-host interactions. Diseases, 2016,4(3):26.
doi: 10.3390/diseases4030026
[45]   Dominguez S R, Travanty E A, Qian Z H, et al. Human coronavirus HKU1 infection of primary human type II alveolar epithelial cells: cytopathic effects and innate immune response. PLoS One, 2013,8(7):e70129.
pmid: 23894604
[46]   Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature, 2005,436(7047):112-116.
[47]   Simmons G, Gosalia D N, Rennekamp A J, et al. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci USA, 2005,102(33):11876-11881.
pmid: 16081529
[48]   Matsuyama S, Nagata N, Shirato K, et al. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol, 2010,84(24):12658-12664.
[49]   Glowacka I, Bertram S, Muller M A, et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol, 2011,85(9):4122-4134.
[50]   Zhu X J, Liu Q, Du L Y, et al. Receptor-binding domain as a target for developing SARS vaccines. J Thorac Dis, 2013,5(Suppl 2):S142-148.
[51]   Lu G W, Hu Y W Wang Q H, et al. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature, 2013,500(7461):227-231.
[52]   Hocke A C, Becher A, Knepper J, et al. Emerging human middle east respiratory syndrome coronavirus causes widespread infection and alveolar damage in human lungs. American Journal of Respiratory & Critical Care Medicine, 2013,188(7):882-886.
[53]   Doremalen N V, Miazgowicz K L, Milne-Price S, et al. Host species restriction of middle east respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4. J Virol, 2014,88(16):9220-9232.
[54]   Barlan A, Zhao J C, Sarkar M K, et al. Receptor variation and susceptibility to middle east respiratory syndrome coronavirus infection. J Virol, 2014,88(9):4953-4961.
pmid: 24554656
[55]   Xu X T, Chen P, Wang J F, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci, 2020,63(3):457-460.
[56]   Tai W B, He L, Zhang X J, Pu J, et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol, 2020,17(6):613-620
[57]   Wong S H, Lui R N, Sung J J. Covid-19 and the digestive system. J Gastroenterol Hepatol, 2020,35(5):744-748.
doi: 10.1111/jgh.15047 pmid: 32215956
[58]   Xu H, Zhong L, Deng J X, et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci, 2020,12(1):8.
pmid: 32094336
[59]   Che X Y, Qiu L W, Liao Z Y, et al. Antigenic cross-reactivity between severe acute respiratory syndrome: associated coronavirus and human coronaviruses 229E and OC43. Journal of Infectious Diseases, 2005,191(12):2033-2037.
[60]   Chowell G, Abdirizak F, Lee S, et al. Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study. BMC Med, 2015,13:210.
[61]   Hunter J C, Nguyen D, Aden B, et al. Transmission of middle east respiratory syndrome coronavirus infections in healthcare settings, Abu Dhabi Emerg Infect Dis, 2016,22(4):647-656.
[62]   Anderson R M, Fraser C, Ghani A C, et al. Epidemiology, transmission dynamics and control of SARS: the 2002-2003 epidemic. Philos Trans R Soc Lond B Biol Sci, 2004,359(1447):1091-1105.
doi: 10.1098/rstb.2004.1490 pmid: 15306395
[63]   de Wit E, van Doremalen N, Falzarano D, et al. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol, 2016,14(8):523-534.
doi: 10.1038/nrmicro.2016.81 pmid: 27344959
[64]   Leung G M, Hedley A J, Ho L M, et al. The epidemiology of severe acute respiratory syndrome in the 2003 Hong Kong epidemic: an analysis of all 1755 patients. Annals of Internal Medicine, 2004,141(9):662-673.
[65]   Cowling B J, Park M, Fang V J, et al. Preliminary epidemiologic assessment of MERS-CoV outbreak in South Korea, May-June 2015. Euro Surveill, 2015,20(25):7-13.
[66]   Tsui P T, Kwok M L, Yuen H, et al. Severe acute respiratory syndrome: clinical outcome and prognostic correlates. Emerging Infectious Diseases, 2003,9(9):1064-1069.
[67]   Fisman D N. Hemophagocytic syndromes and infection. Emerging Infectious Diseases, 2000,6(6):601-608.
doi: 10.3201/eid0606.000608 pmid: 11076718
[68]   Cheng V C C, Hung I F N, Tang B S F, et al. Viral replication in the nasopharynx is associated with diarrhea in patients with severe acute respiratory syndrome. Clinical Infectious Diseases, 2004,38(4):467-475.
[69]   Puthucheary J, Lim D, Chan I, et al. Severe acute respiratory syndrome in Singapore. Archives of Disease in Childhood, 2004,89(6):551-556.
pmid: 15155402
[70]   Ding Y Q, He L, Zhang Q L, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. The Journal of Pathology, 2004,203(2):622-630.
doi: 10.1002/path.1560 pmid: 15141376
[71]   Peiris J S M, Lai S T, Poon L L M, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. The Lancet, 2003,361(9366):1319-1325.
[72]   Leung C H, Gomersall C D. Middle east respiratory syndrome. Intensive Care Med, 2014,40(7):1015-1017.
[73]   Assiri A, Al-Tawfiq J A, Al-Rabeeah A A, et al. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. The Lancet Infectious Diseases, 2013,13(9):752-761.
pmid: 23891402
[74]   Chen N S, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 2020,395(10223):507-513.
[75]   房晓伟, 梅青, 杨田军, 等. 2019新型冠状病毒感染的肺炎79例临床特征及治疗分析. 中国药理学通报, 2020,36(4):1-7.
[75]   Fang X W, Mei Q, Yang T J, et al. 2019 novel coronavirus pneumonia: clinical characteristics and treatment analysis of 79 cases. Chinese Pharmacological Bulletin, 2020,36(4):1-7.
[76]   Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 2020,395(10223):497-506.
[77]   Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr, 2020,87(4):281-286.
doi: 10.1007/s12098-020-03263-6 pmid: 32166607
[78]   中华人民共和国国家卫生健康委员会. 新型冠状病毒肺炎防控方案(第六版).[2020-08-18]. http://www.nhc.gov.cn/jkj/s3577/202003/4856d5b0458141fa9f376853224d41d7.shtml.
[78]   National Health Commission of the People’s Republic of China. Novel coronavirus pneumonia prevention and control program (Sixth Edition). [2020-08-18]. http://www.nhc.gov.cn/jkj/s3577/202003/4856d5b0458141fa9f376853224d41d7.shtml.
[79]   Gao Z, Xu Y, Sun C, et al. 新型冠状病毒肺炎防控方案(第六版).[2020-08-18]. https://www.sciencedirect.com/science/article/pii/S1684118220301134.
[80]   中华人民共和国国家卫生健康委员会. 关于新型冠状病毒无症状感染者的防控工作答问.[2020-08-18]. http://www.nhc.gov.cn/jkj/s3578/202003/718c79c96f3e46409dd49303d41a00ef.shtml.
[80]   National Health Commission of the People’s Republic of China. Questions about novel coronavirus asymptomatic infection prevention and control.[2020-08-18]. http://www.nhc.gov.cn/jkj/s3578/202003/718c79c96f3e46409dd49303d41a00ef.shtml.
[81]   Li Q, Ding X, Xia G, et al. Eosinopenia and elevated C-reactive protein facilitate triage of COVID-19 patients in fever clinic: a retrospective case-control study. E Clinical Medicine. 2020,23:100375.
[82]   Pene F, Merlat A, Vabret A, et al. Coronavirus 229E-related pneumonia in immunocompromised patients. Clinical Infectious Diseases, 2003,37(7):929-932.
doi: 10.1086/377612 pmid: 13130404
[83]   Monto A S. Coronaviruses. The Yale Journal of Biology and Medicine, 1974,47(4):234-251.
[84]   Tyrrell D A J, Cohen S, Schilarb J E. Signs and symptoms in common colds. Epidemiol Infect, 1993,111(1):143-156.
doi: 10.1017/s0950268800056764 pmid: 8394240
[85]   Abdul-Rasool S, Fielding B C. Understanding human coronavirus HCoV-NL63. The Open Virology Journal, 2010,4(1):76-84.
[86]   Woo P C Y, Lau S K P, Chu C M, et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. Journal of Virology, 2004,79(2):884-895.
pmid: 15613317
[87]   Gaunt E R, Hardie A, Claas E C J, et al. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. Journal of Clinical Microbiology, 2010,48(8):2940-2947.
doi: 10.1128/JCM.00636-10 pmid: 20554810
[88]   Fang F, Luo X P. Facing the pandemic of 2019 novel coronavirus infections the pediatric perspectives. Chin J Pediatr, 2020,58(2):81-85.
[89]   Dong Y, Mo X, Hu Y, et al. Epidemiological characteristics of 2143 pediatric patients with 2019 Coronavirus disease in China. Pediatrics, 2020,58(4):712-713.
[90]   Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med, 2020,383(18):1708-1720.
doi: 10.1056/NEJMp2016293 pmid: 32678529
[91]   Song W L, Li J H, Zou N, et al. Clinical features of pediatric patients with coronavirus disease (COVID-19). Journal of Clinical Virology, 2020,127:104377.
doi: 10.1016/j.jcv.2020.104377 pmid: 32361323
[92]   Wu Z, McGoogan J M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA, 2020,323(13):1239-1242.
doi: 10.1001/jama.2020.2648 pmid: 32091533
[93]   Zainab S, Ricci K, Brendan M, et al. COVID-19 and older adults: what we know. JAGS, 2020,68(5):926-929.
[94]   Wan Y, Shang J, Graham R, et al. Receptor recognition by novel coronavirus from Wuhan: An analysis based on decadelong structural studies of SARS. J Virology, 2020, DOI: 10.1128/JVI.00127-20.
doi: 10.1128/JVI.00127-20 pmid: 33239453
[95]   Li X C, Zhang J, Zhuo J L. The vasoprotective axes of the renin-angiotensin system: physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res, 2017,125(PtA):21-38.
[96]   Lei F, George K, Michael R. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection. The Lancet, 2020,8(4):e21.
doi: 10.1016/S2213-2600(20)30116-8 pmid: 32171062
[97]   Arentz M, Yim E, Klaff L, et al. Characteristics and outcomes of 21 criticallyill patients with COVID-19 in Washington State. JAMA, 2020,323(16):1612-1614.
doi: 10.1001/jama.2020.4326 pmid: 32191259
[98]   Li B, Yang J, Zhao F M, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clinical Research in Cardiology, 2020,109(5):531-538.
pmid: 32161990
[99]   Zhang L, Jiang Y, Wei M, et al. Analysis of the pregnancy outcomes in pregnant women with COVID-19 in Hubei Province. Chin J Obstet Gynecol, 2020, DOI: 10.3760/cma.j.cn112141-20200218-00111/.
doi: 10.3760/cma.j.cn112141-20200218-00111
[100]   Wendy N P, Olive P K. Is pregnancy a risk factor of COVID-19. EUR J OBSTET GYN R B, 2020,252:605-609.
[101]   Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med, 2005,11(8):875-879.
doi: 10.1038/nm1267 pmid: 16007097
[102]   中华人民共和国国家卫生健康委员会. 新型冠状病毒肺炎诊疗方案(试行第七版).[2020-08-18]. http://www.nhc.gov.cn/yzygj/s7653p/202003/46c9294a7dfe4cef80dc7f5912eb1989.shtml.
[102]   National Health Commission of the People’s Republic of China. Diagnosis and treatment of novel coronavirus pneu- monia (trial version seventh).[2020-08-18]. http://www.nhc.gov.cn/yzygj/s7653p/202003/46c9294a7dfe4cef80dc7f5912eb1989.shtml.
[1] ZHANG Sai,XIANG Le,LI Lin-hai,LI Hui-jun,WANG Gang,QIAN Chun-gen. Development and Performance Evaluation of A Rapid IgM-IgG Combined Antibody Test for 2019 Novel Coronavirus Infection[J]. China Biotechnology, 2020, 40(8): 1-9.
[2] WU Rui-jun,LI Zhi-fei,ZHANG Xin,PU Run,AO Yi,SUN Yan-rong. Development and Prospect of Antibody Drugs for SARS-CoV-2[J]. China Biotechnology, 2020, 40(5): 1-6.
[3] XIE Hua-ling,LV Lu-cheng,YANG Yan-ping. Patent Analysis of Global Coronavirus Vaccine[J]. China Biotechnology, 2020, 40(1-2): 57-64.
[4] GONG Yue,LIAO Qing-yun,YU Qian-qian,SHI Zhi-xiang,CHEN Jing,ZHANG Yu-hui,ZHAO Guang-hui. A Bibliometric Analysis on Coronaviruses[J]. China Biotechnology, 2020, 40(1-2): 21-37.
[5] ZHAO Ping,YANG Yan-ping. Patent Situation Analysis of Diagnosis Technology for Coronavirus Infection in Human[J]. China Biotechnology, 2020, 40(1-2): 51-56.
[6] LI Dong-qiao,LV Lu-cheng,YANG Yan-ping. The Research Status and Development Trend of Global Human Coronavirus Antibody Field[J]. China Biotechnology, 2020, 40(1-2): 65-70.
[7] CHENG Yong-qing,LIU Jin-yi,LIN Fu-Yu,TONG Mei. Novel Coronavirus Control and the Important Contribution of Interferon α1b[J]. China Biotechnology, 2020, 40(1-2): 71-77.
[8] WANG Guo-qiang,YU Yin-yin,ZENG Hua-hui,WANG Xu-dong,WU Yu-bin,SHANG Li-zhi,LI Yu-lin,ZHANG Yi-qing,ZHANG Xi-xi,ZHANG Zhen-qiang,WANG Yun-long. Preparation of Quality Control Materials for RT-PCR Detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Based on MS2 Phage Virus-like Particles[J]. China Biotechnology, 2020, 40(12): 31-40.
[9] CHEN Li-jun,QU Jing-jing,XIANG Charlie. Therapeutic Potentials, Clinical Studies, and Application Prospects of Mesenchymal Stem Cells in 2019 Novel Coronavirus (COVID-19)[J]. China Biotechnology, 2020, 40(11): 43-55.
[10] SHEN Liang, TAN Wen-jie. Progress on the Technique and its Application of Reverse Genetics for Coronaviruses[J]. China Biotechnology, 2015, 35(2): 84-91.
[11] GU Yuan-xing, WANG Meng, LIU Wen-qian, ZHANG Jie, LIU Yong-sheng. The Application Prospects of Ovine Adenovirus287 Vector[J]. China Biotechnology, 2011, 31(03): 101-106.