Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (12): 31-40    DOI: 10.13523/j.cb.2009008
    
Preparation of Quality Control Materials for RT-PCR Detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Based on MS2 Phage Virus-like Particles
WANG Guo-qiang1,2,YU Yin-yin3,ZENG Hua-hui1,WANG Xu-dong3,WU Yu-bin3,SHANG Li-zhi1,LI Yu-lin2,ZHANG Yi-qing2,4,ZHANG Xi-xi5,ZHANG Zhen-qiang1,**(),WANG Yun-long2,4,**()
1 Henan University of Chinese Medicine, Zhengzhou 450046, China
2 Henan Bioengineering Technology Research Center, Zhengzhou 450002, China
3 Henan General Hospital, Zhengzhou 450002, China
4 Zhengzhou Technical College, Zhengzhou 450000, China
5 Henan Normal University, Xinxiang 453007,China
Download: HTML   PDF(24925KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: Preparation of positive quality control products with good thermal stability, resistance to RNase attack and full monitoring for RT-PCR detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods: The MS2 phage coat protein CP (including the PAC site) gene sequence and the mature enzyme protein A gene sequence (including the ribosome binding site) were amplified and inserted into the plasmid pET28a to construct the universal recombinant vector pET28a/CP-A. Synthesize a specific nucleic acid sequence containing ORF1ab gene, N gene and E gene of SARS-Cov-2, and insert it into the downstream of the PAC site, which is named pET28a/CP-A.The recombinant protein is expressed through the prokaryotic expression system, and purified by ammonium sulfate and gel filtration chromatography. The purified protein is physically characterized by electron microscopy and dynamic light scattering. The formed armor RNA is digested with omnipotent nuclease, and its thermal stability is verified by fluorescent RT-PCR. Results: A recombinant vector containing the MS2 bacteriophage coat protein gene, the mature enzyme protein gene and exogenous nucleic acid was successfully constructed. VLPs was efficiently expressed in the form of soluble protein at 25℃ and IPTG at 0.3mmol /L for 14h. After purification, The VLPs were observed under transmission electron microscopy in uniform shape and size,with a diameter of about 23-28nm. The VLPs were digested with Benzonase nuclease, and detected by RT-PCR, which confirmed that they formed armor RNA that encapsulated the target gene. The armor RNA can exist stably at 37℃ for 10-15 days under sterile conditions. Conclusion: In vitro, the armor RNA encapsulating foreign target sequence prepared by self-assembly of MS2 phage coat protein and mature enzyme protein has good thermal stability and can monitor the entire detection process. It can be used as a qualitative or quantitative quality control product for the detection of SARS-CoV-2 by RT-PCR.



Key wordsSevere acute respiratory syndrome coronavirus 2      MS2 phage      Armor RNA      Virus-like particles     
Received: 05 September 2020      Published: 14 January 2021
ZTFLH:  Q816  
Corresponding Authors: Zhen-qiang ZHANG,Yun-long WANG     E-mail: zhang_zhenqiang@126.com;biowyl@126.com
Cite this article:

WANG Guo-qiang,YU Yin-yin,ZENG Hua-hui,WANG Xu-dong,WU Yu-bin,SHANG Li-zhi,LI Yu-lin,ZHANG Yi-qing,ZHANG Xi-xi,ZHANG Zhen-qiang,WANG Yun-long. Preparation of Quality Control Materials for RT-PCR Detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Based on MS2 Phage Virus-like Particles. China Biotechnology, 2020, 40(12): 31-40.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2009008     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I12/31

引物名称 引物序列(5'-3')
A-F CCCAAGCTTTGTAGGTAGCCGGAATTCCA
A-R AAGGAAAAAAGCGGCCGCCTATCTAGAGAGCCGTTG
CP-F CTAGCTAGCCTTCTAACTTTACTC
CP-R CGCGGATCCTGTTGTCTTCGACATGGGTA
IN-F CGCGGATCCGGGGAACTTCTCCTGCTAGAAT
IN-R CCCAAGCTTATATTGCAGCAGTACGCACACA
N-F GGGGAACTTCTCCTGCTAGAAT
N-R CAGACATTTTGCTCTCAAGCTG
N-Probe 5'-CY5-TTGCTGCTGCTTGACAGATT-TAMRA-3'
ORF1ab-F CCCTGTGGGTTTTACACTTAA
ORF1ab-R ACGATTGTGCATCAGCTGA
ORF1ab-Probe 5'-ROX-CCGTCTGCGGTATGTGGAAAGGTTATGG-BHQ1-3'
E-F ACAGGTACGTTAATAGTTAATAGCGT
E-R ATATTGCAGCAGTACGCACACA
E-Probe 5'-FAM-ACACTAGCCATCCTTACTGCGCTTCG-BHQ2-3'
Table 1 Primer and probe sequences used in RT-PCR
Fig.1 Recombinant plasmid construction and identification (a) Target sequence PCR amplification M:DNA marker(DL2000);1-3:Respectively CP gene, A gene and S sequence (b)Recombinant plasmid digestion identification M:DNA marke (DL5000);1-3:Respectively, CP gene,A gene and S sequence double digestion
Fig.2 Schematic diagram of the expression region structure of the co-expression plasmid and insert sequence
Fig.3 Purification and identification of target protein (a) The SDS-PAGE of target protein protein M:Protein marker (10-180kDa);1:The ultrasonic supernatant of bacterial cells;2:The ultrasonic precipitation of bacterial cells; 3:The resuspend supernatant after precipitation with 30% ammonium sulfate;4:The target protein after purification by molecular exclusion chromatography (b)The HPLC detects the purity of the target protein
Fig.4 Physical characterization of chimeric epitope nanoparticles (a) Electron microscope observation (b)DLS detection
Fig.5 RT-PCR detection of residual nucleic acid of virus-like particle
Fig.6 Standard curve establishment and determination of nucleic acid copy number of virus-like particles
Fig.7 Thermal stability test of virus-like particles (armor RNA) (a)Three genes (E gene,ORF1ab gene and N gene) three channels (FAM channel, ROX channel and CY5 channel) (b)E gene(FAM channel) (c)ORF1ab gene(ROX channel) (d)CY5 gene(CY5 channel)
[1]   Wang C, Horby P W, Hayden F G, et al. A novel coronavirus outbreak of global health concern. Lancet, 2020,395(10223):470-473.
pmid: 31986257
[2]   国家卫生健康委员会. 新型冠状病毒感染的肺炎纳入法定传染病管理. [2020-01-21]. http://www.nhc.gov.cn/jkj/s7915/202001/e4e2d5e6f01147e0a8df3f6701d49f33.shtml.
[2]   National Health Commission. New coronavirus-infected pneumonia is included in the management of legal infectious diseases. [2020-01-21]. http://www.nhc.gov.cn/jkj/s7915/202001/e4e2d5e6f01147e0a8df3f6701d49f33.shtml.
[3]   Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet, 2020,395(10224):565-574.
doi: 10.1016/S0140-6736(20)30251-8 pmid: 32007145
[4]   Tang X L, Wu C C, Li X, et al. On the origin and continuing evolution of SARS-CoV-2. National Science Review, 2020,7(6):1012-1023.
[5]   Cui J, Li F, Shi Z L. Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 2019,17(3):181-192.
doi: 10.1038/s41579-018-0118-9 pmid: 30531947
[6]   Shun A, Takaaki K, Naoya D, et al. Commentary: Origin and evolution of pathogenic coronaviruses. Frontiers in immunology, 2020,11:811.
doi: 10.3389/fimmu.2020.00811 pmid: 32373134
[7]   Liu P, Jiang J Z, Wan X F, et al. Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2). PLoS Pathog, 2020 , 16(5):e1008421.
doi: 10.1371/journal.ppat.1008421 pmid: 32407364
[8]   国家卫生健康委员会. 新型冠状病毒肺炎诊疗方案(试行第一到八版). [2020-08-20]. http://www.nhc.gov.cn/yzygj/ggwsylglc/ new_list.shtml.
[8]   National Health Commission. COVID-19 protocol (trial 1st to 8th edition). [2020-08-20]. http://www.nhc.gov.cn/yzygj/ggwsylglc/ new_list.shtml.
[9]   许丽, 梁文, 杨雪, 等. 新型冠状病毒RNA标准物质. 科学通报, 2020,65(22):2363-2370.
[9]   Xu L, Liang W, Yang X, et al. SARS-CoV-2 RNA reference materials. Chinese Science Bulletin, 2020,65(22):2363-2370.
[10]   Wei Y, Yang C, Wei B, et al. RNase-resistant virus-like particles containing long chimeric RNA sequences produced by two-plasmid coexpression system. Journal of Clinical Microbiology, 2008,46(5):1734-1740.
doi: 10.1128/JCM.02248-07 pmid: 18305135
[11]   Dika C, Duval J F L, Ly-Chatain H M, et al. Impact of internal RNA on aggregation and electrokinetics of viruses: Comparison between MS2 phage and corresponding virus-like particles. Applied and Environmental Microbiology, 2011,77(14):4939-4948.
doi: 10.1128/AEM.00407-11 pmid: 21622784
[12]   Pickett G G, Peabody D S. Encapsidation of het erologous RNAs by bact eriophage MS 2 coat protein. Nucleic Acids Res, 1993,21(19):4621-4626.
doi: 10.1093/nar/21.19.4621 pmid: 8233800
[13]   Zhou E M, Ridd D, Riva J, et al. Development and evaluation of an IgM-capture ELISA for detection of recent infection with blue tongue viruses in cattle. Journal of Virological Methods, 2001,91(2):175-182.
pmid: 11164499
[14]   徐淑芹, 黄兴富. 耐核糖核酸酶病毒样颗粒的构建和表达. 医学检验与临床, 2008,19(5):33-35.
[14]   Xu S Q, H X F. The construction and expression of resistant RNA virus like particles. Medical Laboratory Science and Clinics, 2008,19(5):33-35.
[15]   周婷婷, 朱进. 新型冠状病毒实验室检测方法及应用. 南京医科大学学报, 2020,40(4):474-477.
[15]   Zhou T T, Zhu J, Application and laboratory detection of severe acute respiratory syndrome coronavirus-2. Journal of Nanjing Medical University, 2020,40(4):474-477.
[16]   温和心, 龙英全, 蒋荣华, 等. RNA病毒质控物研究进展. 动物医学进展, 2013,34(1):97-101.
[16]   Wen H X, Long Y Q, Jiang R H, et al. Research progress of RNA virus quality control substances. Progress in Veterinary Medicine, 2013,34(1):97-101.
[17]   Stockley P G, S tonehouse N J, Murray J B, et al. Probing sequence-specific RNA recognition by the bacteriophage MS2 coat protein. Nucleic Acids Res, 1995,23(1):2512-2518.
[18]   李金明. RNA病毒扩增检测的质控品和标准品研究进展. 中华医学检验杂志, 2004,27(12):873-874.
[18]   Li J M. Research progress of quality control and standard products for RNA virus amplification and detection. Chinese Journal of Laboratory Medicine, 2004,27(12):873-874.
[1] CHEN Xiu-yue,ZHOU Wen-feng,HE Qing,SU Bing,ZOU Ya-wen. Preparation, Purification and Identification of Bacteriophage Qβ Virus-like Particles[J]. China Biotechnology, 2021, 41(7): 42-49.
[2] WANG Yan-wei,LI Peng-hao,LIANG Yan-yu,GUAN Yang,PANG Wen-qiang,TIAN Ke-gong. Efficient Assembly of Virus-like Particles of Porcine Circovirus Type 2[J]. China Biotechnology, 2020, 40(11): 35-42.
[3] Hong-mei BAI,Wei-wei HUANG,Cun-bao LIU,Wen-jia SUN,Xu YANG,Yan-bing MA. Co-expression Construction of Qβ Phage Virus-like Particles Presenting Human Interleukin-13 Antigenic Peptide[J]. China Biotechnology, 2018, 38(5): 66-72.
[4] SUN Peng-yan, LI Kui, LIU Cun-bao, YAO Yu-feng, CHU Xiao-jie, BAI Hong-mei, YANG Xu, HUANG Wei-wei, SUN Wen-jia, MA Yan-bing. Co-expression of Ebola Virus GP and VP40 Proteins and Virus-like particles Assembly in Mammalian Cells[J]. China Biotechnology, 2016, 36(12): 66-71.
[5] CHU Xiao-jie, LI Yang, LONG Qiong, YAO Yu-feng, SUN Wen-jia, HUANG Wei-wei, YANG Xu, Liu Cun-bao, MA Yan-bing. Development of a HPV16 E7 CTLs Peptides-based Virus-like Particle Therapeutic Vaccine[J]. China Biotechnology, 2015, 35(2): 45-51.
[6] . Construction of the expression vector of virus-like particles containing FMDV IRES RNA[J]. China Biotechnology, 2007, 27(9): 31-35.
[7] . Advance in HPV vaccine[J]. China Biotechnology, 2007, 27(4): 104-109.
[8] . Rhizosecretion of HIV-1 recombinant capsid protein from transgenic Lycium barbarum L. hairy roots[J]. China Biotechnology, 2007, 27(2): 53-57.