Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (8): 1-9    DOI: 10.13523/j.cb.2006044
    
Development and Performance Evaluation of A Rapid IgM-IgG Combined Antibody Test for 2019 Novel Coronavirus Infection
ZHANG Sai1,XIANG Le1,LI Lin-hai2,LI Hui-jun3,WANG Gang1,QIAN Chun-gen4,*()
1 Shenzhen YHLO Biotech Co., Ltd., Shenzhen 518116, China
2 General Hospital of Southern Theater Command, Guangzhou 510010, China
3 Tongji Hospital affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
4 College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Download: HTML   PDF(994KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To establish a colloidal gold technique assay for the rapid detection of immunoglobulin M (IgM) and immunoglobulin G (IgG) antibodies against 2019 novel coronavirus (2019-nCoV) and to evaluate its clinical performance. Methods: The colloidal gold was prepared by trisodium citrate reduction. The receptor binding domain (RBD) of spike protein and nucleocapsid protein (NP) were used as marker antigen. The nitrocellulose membrane was coated with mouse anti human IgM monoclonal antibody and mouse anti human IgG monoclonal antibody, and the detection reagent was prepared by using dinitrophenol-bovine serum albumin (DNP-BSA) and rabbit anti DNP polyclonal antibody as independent quality control. By comparing the clinical coincidence rate of RBD protein and NP protein, the better antigen was selected to prepare the detection reagent, and the performance of cross reactivity, interference reactivity, accelerated stability, specificity and sensitivity of clinical diagnosis were evaluated. Results: The total coincidence rate of RBD protein was 98.48% (389/395), and that of NP protein was 89.11% (352/395). There were no cross reaction with antibody positive samples of 13 common pathogens. Triglyceride, hemoglobin, bilirubin, rheumatoid factor (RF), human anti mouse antibody (HAMA) and antinuclear antibody (ANA) in the samples did not interfere with the test results. The kit was stable after 6 weeks accelerated at 50℃. The sensitivity of IgM was 78.31% (65/83), the specificity was 98.90% (721/729), the sensitivity of IgG was 92.77% (77/83), the specificity was 99.31% (724/729), the sensitivity of IgM and IgG combined detection was 92.77% (77/83), the specificity was 98.35% (717/729), the kappa consistency test had a kappa value of 0.883 0 (P<0.05). Conclusion: The 2019-nCoV IgM/IgG antibody detection reagent (colloidal gold method) has the advantages of high specificity and sensitivity, fast detection speed and portable operation, which can be used as a supplementary method for the existing 2019-nCoV nucleic acid detection method.



Key wordsNovel coronavirus      Antibodies      Colloidal gold      Immunochromatography     
Received: 23 June 2020      Published: 10 September 2020
ZTFLH:  Q819  
Corresponding Authors: Chun-gen QIAN     E-mail: chungen_qian@hust.edu.cn
Cite this article:

ZHANG Sai,XIANG Le,LI Lin-hai,LI Hui-jun,WANG Gang,QIAN Chun-gen. Development and Performance Evaluation of A Rapid IgM-IgG Combined Antibody Test for 2019 Novel Coronavirus Infection. China Biotechnology, 2020, 40(8): 1-9.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2006044     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I8/1

Fig.1 Structure chart of test strip for IgM and IgG antibody combined detection
Z-Average (d.nm) PDI Zeta potential (mV)
胶体金 26.11±0.06 0.06±0.01 -40.40±2.01
NP蛋白偶合物 87.78±0.47 0.24±0.01 -21.63±1.05
RBD蛋白偶合物 33.95±0.52 0.25±0.01 -31.97±0.06
DNP-BSA蛋白偶合物 40.97±0.31 0.23±0.01 -30.93±0.31
Table 1 Particle size and zeta potential of colloidal gold and its coupling
Fig.2 Particle size distribution of colloidal gold and its coupling
IgM IgG IgM/IgG联合
NP蛋白 RBD蛋白 NP蛋白 RBD蛋白 NP蛋白 RBD蛋白
灵敏度 62.96%(17/27) 77.78%(21/27) 92.59%(25/27) 92.59%(25/27) 92.59%(25/27) 92.59%(25/27)
特异性 90.22%(332/368) 99.73%(367/368) 96.74%(356/368) 99.18%(365/368) 88.86%(327/368) 98.91%(364/368)
总符合率 88.35%(349/395) 98.23%(388/395) 96.46%(381/395) 98.73%(390/395) 89.11%(352/395) 98.48%(389/395)
Table 2 Comparison of sensitivity and specificity between NP protein and RBD protein
0周 2周 4周 6周
IgM IgG IgM IgG IgM IgG IgM IgG
质控品1 1 + ++ + ++ + ++ + ++
2 + ++ + ++ + ++ + ++
3 + ++ + ++ + ++ + ++
质控品2 1 +/- + +/- + +/- + +/- +
2 +/- + +/- + +/- + +/- +
3 +/- + +/- + +/- + +/- +
Table 3 The results of accelerated stability
2019-nCoV
IgM IgG
甲型流感病毒IgM抗体阳性血清 - -
乙型流感病毒IgM抗体阳性血清 - -
呼吸道合胞病毒IgM抗体阳性血清 - -
腺病毒IgM抗体阳性血清 - -
肺炎支原体IgG抗体阳性血清 - -
肺炎支原体IgM抗体阳性血清 - -
肺炎衣原体IgG抗体阳性血清 - -
肺炎衣原体IgM抗体阳性血清 - -
EB病毒衣壳抗原IgG抗体阳性血清 - -
EB病毒衣壳抗原IgM抗体阳性血清 - -
巨细胞病毒IgG抗体阳性血清 - -
巨细胞病毒IgM抗体阳性血清 - -
风疹病毒IgG抗体阳性血清 - -
风疹病毒IgM抗体阳性血清 - -
人类免疫缺陷病毒抗体阳性血清 - -
梅毒螺旋体抗体阳性血清 - -
乙型肝炎病毒表面抗体阳性血清 - -
丙型肝炎病毒IgG抗体阳性血清 - -
Table 4 The results of cross reaction
质控品1 质控品2
IgM IgG IgM IgG
甘油三酯 + ++ +/- +
血红蛋白 + ++ +/- +
胆红素 + ++ +/- +
RF + ++ +/- +
HAMA + ++ +/- +
ANA + ++ +/- +
Table 5 The results of interference response
IgM IgG IgM/IgG联合
灵敏度 78.31% (65/83) 92.77% (77/83) 92.77% (77/83)
95%CI: 84.93%~97.30%
特异性 98.90% (721/729) 99.31% (724/729) 98.35% (717/729)
95%CI: 97.14%~99.15%
阳性预测值 89.04% (65/73) 93.90% (77/82) 86.52% (77/89)
95%CI: 77.63%~92.83%
阴性预测值 97.56% (721/739) 99.18% (724/730) 99.17% (717/723)
95%CI: 98.20%~99.69%
总符合率 96.80% (786/812) 98.65% (801/812) 97.78% (794/812)
95%CI: 96.52%~98.68%
Table 6 Statistical results of clinical performance
Fig.3 The legend of clinical test The legend of clinical test (the upper picture shows the positive sample, and the lower picture shows the negative sample)
[1]   Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol, 2020,92(4):1-6.
doi: 10.1002/jmv.v92.1
[2]   国家卫生健康委办公厅, 国家中医药管理局办公室. 新型冠状病毒肺炎诊疗方案(试行第七版).[2020-03-03]. http://www.gov.cn:8080/zhengce/zhengceku/2020-03/04/content_5486705.htm.
[2]   Office of National Health Commission, Office of National Administration of Traditional Chinese Medicine. Diagnosis and treatment scheme of new coronavirus pneumonia (Trial 7th edition).[2020-03-03]. http://www.gov.cn:8080/zhengce/zhengceku/2020-03/04/content_5486705.htm.
[3]   Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020,395(10224):565-574.
doi: 10.1016/S0140-6736(20)30251-8 pmid: 32007145
[4]   Paraskevis D, Kostaki E G, Magiorkinis G, et al. Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infection, Genetics and Evolution, 2020,79:104212.
doi: 10.1016/j.meegid.2020.104212 pmid: 32004758
[5]   Chu D K W, Pan Y, Cheng S M S, et al. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin Chem, 2020,66(4):549-555.
doi: 10.1093/clinchem/hvaa029 pmid: 32031583
[6]   Corman V M, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill, 2020,25(3):1-8.
[7]   An J H, Liao X J, Xiao T Y, et al. Clinical characteristics of the recovered COVID-19 patients with re-detectable positive RNA test. medRxiv preprint. [2020-03-30]. https://doi.org/10.1101/2020.03.26.20044222.
[8]   Broughton J P, Deng X D, Yu G X, et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nature Biotechnology, 2020,38:870-874.
doi: 10.1038/s41587-020-0513-4 pmid: 32300245
[9]   李晖, 李咏茵, 张志高, 等. 2019新型冠状病毒抗体胶体金检测方法的建立与临床性能评价. 中华传染病杂志, [2020-03-03]. https://doi.org/10.3760/cma.j.cn311365-20200221-00101.
[9]   Li H, Li Y Y, Zhang Z G, et al. Establishment and clinical performance evaluation of 2019 novel coronavirus antibody colloidal gold detection method. Chin J Infect Dis, [2020-03-03]. https://doi.org/10.3760/cma.j.cn311365-20200221-00101.
[10]   Li Z T, Yi Y X, Luo X M, et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. Journal of Medical Virology, 2020, https://doi.org/10.1002/jmv.25727.
doi: 10.1002/jmv.26477 pmid: 32880994
[11]   刘雄, 柯跃华, 刘威, 等. 423例新型冠状病毒肺炎患者血清抗体检测结果与临床诊断应用价值研究 . 中华实验和临床病毒学杂志, [2020-03-30]. https://doi.org/10.3760/cma.j.cn112866-20200313-00064
[11]   Liu X, Ke Y H, Liu W, et al. Analysis of the Serum antibody test results and clinical diagnostic value in patients with new coronavirus pneumonia. Chinese J Exp Clin Virol, [2020-03-30].https://doi.org/10.3760/cma.j.cn112866-20200313-00064
[12]   Long Q X, Liu B Z, Deng H J, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nature Medicine, 2020, https://doi.org/10.1038/s41591-020-0897-1.
pmid: 32807938
[13]   Okba N M A, Müller M A, Li W T, et al. SARS-CoV-2 specific antibody responses in COVID-19 patients. medRxiv preprint, https://doi.org/10.1101/2020.03.18.20038059.
[14]   Ai T, Yang Z, Hou H, et al. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology, 2020,26:200642.
[15]   Zhou P, Yang X L, Wang X G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020,579:270-273.
doi: 10.1038/s41586-020-2012-7 pmid: 32015507
[16]   Jans H, Liu X, Austin L, et al. Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies. Analytical Chemistry, 2009,81(22):9425-9432.
doi: 10.1021/ac901822w pmid: 19803497
[17]   Hunter R J. Zeta potential in colloid science: principles and applications. London: Academic Press, 1982.
[18]   CLSI. EP25-A Evaluation of stability of in vitro diagnostic reagents; Approved Guideline. 2010.[2020-05-20]. https://clsi.org/media/1424/ep25a_sample.pdf.
[19]   谭明凯, 区静怡, 黄颖, 等. 新型冠状病毒3种抗体试剂盒的性能评估及临床应用初探. 中华微生物学和免疫学杂志, 2020,40(4):250-255.
[19]   Tan M K, Ou J Y, Huang Y, et al. Performance evaluation and clinical application of three antibody test kits for novel coronavirus. Chin J Microbiol Immunol, 2020,40(4):250-255.
[20]   To K K, Tsang O T, Leung W S, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. The Lancet Infectious Diseases, 2020,20(5):565-574.
doi: 10.1016/S1473-3099(20)30196-1 pmid: 32213337
[21]   To K K, Tsang O T, Yip C C, et al. Consistent detection of 2019 novel coronavirus in saliva. Clin Infect Dis, Feb 2020. https://doi.org/10.1093/cid/ciaa149.
doi: 10.1093/cid/ciaa1342 pmid: 32887998
[1] SHI Rui,YAN Jing-hua. Research Progress of Neutralizing Antibody Drugs against SARS-CoV-2[J]. China Biotechnology, 2021, 41(6): 129-135.
[2] ZHANG Sai,WANG Gang,LIU Zhong-ming,LI Hui-jun,WANG Da-ming,QIAN Chun-gen. Development and Performance Evaluation of a Rapid Antigen Test for SARS-CoV-2[J]. China Biotechnology, 2021, 41(5): 27-34.
[3] WANG Meng,SONG Hui-ru,CHENG Yu-jie,WANG Yi,YANG Bo,HU Zheng. Accurate Detection of Streptococcus pneumoniae by Using Ribosomal Protein L7 / L12 as Molecular Marker[J]. China Biotechnology, 2020, 40(4): 34-41.
[4] CHENG Yong-qing,LIU Jin-yi,LIN Fu-Yu,TONG Mei. Novel Coronavirus Control and the Important Contribution of Interferon α1b[J]. China Biotechnology, 2020, 40(1-2): 71-77.
[5] CHEN Li-jun,QU Jing-jing,XIANG Charlie. Therapeutic Potentials, Clinical Studies, and Application Prospects of Mesenchymal Stem Cells in 2019 Novel Coronavirus (COVID-19)[J]. China Biotechnology, 2020, 40(11): 43-55.
[6] Qian GAO,Hong JIANG,Mao YE,Wen-juan GUO. Current Status and Trend of R&D of Monoclonal Antibodies[J]. China Biotechnology, 2019, 39(3): 111-119.
[7] Jing-wen XU,Xue-mei ZHANG,Zhong-xiang WU,Wen-bing ZHU,Xi JIANG,Wei GONG,Li-wei YAN,Jie SONG,Hui LI,Shao-zhong DONG. Preparation and Identification of Monoclonal Antibodies Against Tree Shrews CD3ε[J]. China Biotechnology, 2018, 38(4): 54-62.
[8] Li DU,Xiao-zhi LIU,Jian GAO,Zhi-ming WANG. Research Progress on Immunogenicity Evaluation of Antibodies[J]. China Biotechnology, 2018, 38(2): 89-94.
[9] LI Min, WU Ri-wei. The Market Overview of Monoclonal Antibodies in Both Domestic and Abroad[J]. China Biotechnology, 2017, 37(3): 106-114.
[10] XIA Qi-yu, LI Mei-ying, YANG Xiao-liang, XIAO Su-sheng, HE Ping-ping, GUO An-ping. Immunochromatography Test Strip and Its Applications in Detection of Genetically Modified Organisms[J]. China Biotechnology, 2017, 37(2): 101-110.
[11] MENG Guo-ji, DENG Yi-xi, LI Le, LUO Hao-hui, YU Yu-gen. Promotion in ProteinA Chromatography of WLB303 Monoclonal Antibody by Using Dual Flowrate to Load Sample[J]. China Biotechnology, 2016, 36(6): 65-75.
[12] MAO Kai-yun, YANG Lu, WANG Heng-zhe, CHEN Da-ming. Market Status and Development Trend of Biotech Drugs[J]. China Biotechnology, 2015, 35(1): 111-119.
[13] GAO Xing-jie, ZHANG Yi, SU Chao, FU Xue, SHI Xue-bin, YIN Jie, HE Jin-yan, WANG Xin-ting, YAO Zhi, YANG Jie. The Analysis and Preparation of the Stress Associated Phosphorylation Antibodies Specific for the T103 Site of Tudor-SN Protein[J]. China Biotechnology, 2014, 34(06): 55-60.
[14] LI Pu, SHI Jing, CHENG Fen, LIANG Qin-dong, KUANG Wen-bin, WANG Qin, DONG Jin-yu, TU Zhi-guang. Preparation, Characterization and Application of Monoclonal Antibodies Against Human Y box-binding Protein 1[J]. China Biotechnology, 2012, 32(6): 13-19.
[15] LIU Qi-gang, DAI Yun-jian, ZHANG Yong-xia, WANG Bao-cheng, WANG Ming-rong. Efficient Soluble Expression of Anti-IgE scFv in E.coli and Optimization of Expression Conditions[J]. China Biotechnology, 2012, 32(11): 23-28.