Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (6): 53-62    DOI: 10.13523/j.cb.2001014
    
Research Progress on Vesicular Stomatitis Virus-based Oncolytic Virotherapy
ZHANG Bao-hui1,3,XIONG Hua-long2,3,ZHANG Tian-ying1,3,**(),YUAN Quan1,3
1 School of Public Health, Xiamen University, Xiamen 361102, China
2 School of Life Sciences, Xiamen University, Xiamen 361102, China
3 National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
Download: HTML   PDF(1033KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Oncolytic virus utilizes the characteristics of tumor cells, such as deficiency of antiviral signaling pathway or overexpressing viral receptors, to preferentially infect, replicate in and kill tumor cells, which are emerging as important agents in cancer treatment. Due to the lack of interferon signaling pathways, tumor cells can be specifically targeted by vesicular stomatitis virus (VSV). VSV-based platform shows high prospects, as its efficient replication, broad tissue tropism, low pathogenicity to humans and its small and easy-to-manipulate genome. The virological characteristics of vesicular stomatitis virus and the current research progress of VSV-based oncolytic virus to improve tumor selectivity, extend half-life and increase oncolytic efficacy are discussed in this review.



Key wordsOncolytic viruses      Vesicular stomatitis virus      Tumor     
Received: 03 January 2020      Published: 23 June 2020
ZTFLH:  Q789  
Corresponding Authors: Tian-ying ZHANG     E-mail: tyzhang1003@163.com
Cite this article:

ZHANG Bao-hui,XIONG Hua-long,ZHANG Tian-ying,YUAN Quan. Research Progress on Vesicular Stomatitis Virus-based Oncolytic Virotherapy. China Biotechnology, 2020, 40(6): 53-62.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2001014     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I6/53

Fig.1 The vesicular stomatitis virus (VSV) particle structure and mechanisms that mediate the anti-tumor activity
目的 改造方式 病毒/药物 描述 参考文献
降低神经毒性,提高安全性 M蛋白基因改造 VSV-ΔM51 删除M蛋白基因上的第51位氨基酸 [81]
G蛋白基因改造 VSVΔG-CHICKV, VSVΔG-H5N1, VSVΔG-Nipah F, VSVΔG-Nipah G 分别用基孔肯雅病毒、流感H5N1病毒、尼帕病毒的G蛋白或其F蛋白替换VSV-G [35]
调整基因转录强度 VSV-12'GFP 将两个绿色荧光蛋白基因插入VSV基因组3'末端,获得高度减毒毒株 [40]
调节VSV感染过程相关miRNA功能 VSV-125 将4个拷贝的miRNA-125的cRNA序列插入L蛋白基因的3'端 [42]
延长体内存留时间 调节体内免疫微环境 rVSV(GP) 用淋巴细胞脉络丛脑膜炎病毒(Lymphocytic Choriomeningitis Virus, LCMV)的G蛋白替换VSV-G的嵌合病毒 [37]
提高直接杀伤作用 抑癌基因整合 VSV-mp53, VSV-M(mut)-mp53 在VSV或VSV-M(mut)基础上整合小鼠p53基因 [50]
自杀基因整合 VSV-C:U VSV整合胞嘧啶脱氨酶(CD)/尿嘧啶磷酸核糖转移酶(UPRT)融合基因 [59]
增强肿瘤组织浸润 VSV-DV/F(L289A) 将新城疫病毒(Newcastle Disease Virus, NDV)的融合蛋白(NDV/F)突变体L289A基因整合到VSV基因组 [60]
联合治疗 VSV-(Δ51)-NIS与放疗 VSV-ΔM51整合人钠碘同向转运体(NIS),NIS介导高浓度碘的摄取,VSV(Δ51)-NIS与碘-131联合治疗小鼠5TGM1骨髓瘤 [65]
增强肿瘤特异性免疫 免疫调节细胞因子基因整合 VSV-mIFNβ, -hIFNβ, VSV-rIFNβ VSV整合小鼠/人/大鼠IFNβ基因 [72,82]
肿瘤相关抗原基因整合 VSV-NRAS, VSV-TYRP1, VSV-CYC1 VSV整合人肿瘤相关抗原基因:神经母细胞瘤Ras(NRAS)/酪氨酸酶相关蛋白1(TYRP1)/ 细胞色素C1(CYC1) [73]
联合免疫检查点抑制剂 VSV-mIFNβ-NIS 与PD-L1抗体 联合治疗小鼠急性髓细胞性白血病 [78]
Table 1 Representative VSV recombinants used as oncolytic virus
[1]   Choi A H, O’Leary M P, Fong Y , et al. From benchtop to bedside: a review of oncolytic virotherapy. Biomedicines, 2016,4(3):18.
[2]   Garber K . China approves world’s first oncolytic virus therapy for cancer treatment. J Natl Cancer Inst, 2006,98(5):298-300.
doi: 10.1093/jnci/djj111 pmid: 16507823
[3]   Andtbacka R H, Kaufman H L, Collichio F , et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol, 2015,33(25):2780-2788.
[4]   Drolet B S, Stuart M A, Derner J D . Infection of melanoplus sanguinipes grasshoppers following ingestion of rangeland plant species harboring vesicular stomatitis virus. Appl Environ Microbiol, 2009,75(10):3029-3033.
[5]   Banerjee A K . The transcription complex of vesicular stomatitis virus. Cell, 1987,48(3):363-364.
pmid: 3026646
[6]   Johannsdottir H K, Mancini R, Kartenbeck J , et al. Host cell factors and functions involved in vesicular stomatitis virus entry. J Virol, 2009,83(1):440-453.
[7]   Shi Z, Cai Z, Sanchez A , et al. A novel toll-like receptor that recognizes vesicular stomatitis virus. J Biol Chem, 2011,286(6):4517-4524.
[8]   Hornung V, Ellegast J, Kim S , et al. 5'-triphosphate rna is the ligand for rig-i. Science, 2006,314(5801):994-997.
doi: 10.1126/science.1132505 pmid: 17038590
[9]   Weidner J M, Jiang D, Pan X B , et al. Interferon-induced cell membrane proteins, ifitm3 and tetherin, inhibit vesicular stomatitis virus infection via distinct mechanisms. J Virol, 2010,84(24):12646-12657.
pmid: 20943977
[10]   Sarojini S, Theofanis T, Reiss C S . Interferon-induced tetherin restricts vesicular stomatitis virus release in neurons. DNA Cell Biol, 2011,30(12):965-974.
[11]   Wang B X, Rahbar R, Fish E N . Interferon: current status and future prospects in cancer therapy. J Interferon Cytokine Res, 2011,31(7):545-552.
doi: 10.1089/jir.2010.0158 pmid: 21323567
[12]   Ahmed M, Lyles D S . Effect of vesicular stomatitis virus matrix protein on transcription directed by host rna polymerases i, ii, and iii. J Virol, 1998,72(10):8413-8419.
[13]   Black B L, Lyles D S . Vesicular stomatitis virus matrix protein inhibits host cell-directed transcription of target genes in vivo. J Virol, 1992,66(7):4058-4064.
pmid: 1318397
[14]   Enninga J, Levy D E, Blobel G , et al. Role of nucleoporin induction in releasing an mrna nuclear export block. Science, 2002,295(5559):1523-1525.
[15]   Faria P A, Chakraborty P, Levay A , et al. Vsv disrupts the rae1/mrnp41 mrna nuclear export pathway. Mol Cell, 2005,17(1):93-102.
[16]   Rajani K R, Pettit Kneller E L, McKenzie M O , et al. Complexes of vesicular stomatitis virus matrix protein with host rae1 and nup98 involved in inhibition of host transcription. PLoS Pathog, 2012,8(9):e1002929.
[17]   Altomonte J, Wu L, Meseck M , et al. Enhanced oncolytic potency of vesicular stomatitis virus through vector-mediated inhibition of nk and nkt cells. Cancer Gene Ther, 2009,16(3):266-278.
pmid: 18846115
[18]   Bommareddy P K, Shettigar M, Kaufman H L . Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol, 2018,18(8):498-513.
doi: 10.1038/s41577-018-0014-6 pmid: 29743717
[19]   Stojdl D F, Lichty B, Knowles S , et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med, 2000,6(7):821-825.
[20]   Melzer M K, Lopez-Martinez A, Altomonte J . Oncolytic vesicular stomatitis virus as a viro-immunotherapy: defeating cancer with a “hammer” and “anvil”. Biomedicines, 2017,5(1):8.
doi: 10.3390/biomedicines5010008
[21]   Connor J H, Naczki C, Koumenis C , et al. Replication and cytopathic effect of oncolytic vesicular stomatitis virus in hypoxic tumor cells in vitro and in vivo. J Virol, 2004,78(17):8960-8970.
doi: 10.1128/JVI.78.17.8960-8970.2004
[22]   Dal Canto M C, Rabinowitz S G, Johnson T C . Status spongiousus resulting from intracerebral infection of mice with temperature-sensitive mutants of vesicular stomatitis virus. Br J Exp Pathol, 1976,57(3):321-330.
pmid: 182197
[23]   Plakhov I V, Arlund E E, Aoki C , et al. The earliest events in vesicular stomatitis virus infection of the murine olfactory neuroepithelium and entry of the central nervous system. Virology, 1995,209(1):257-262.
pmid: 7747478
[24]   Shinozaki K, Ebert O, Suriawinata A , et al. Prophylactic alpha interferon treatment increases the therapeutic index of oncolytic vesicular stomatitis virus virotherapy for advanced hepatocellular carcinoma in immune-competent rats. J Virol, 2005,79(21):13705-13713.
doi: 10.1128/JVI.79.21.13705-13713.2005 pmid: 16227290
[25]   Schellekens H, miers-de Vreede S E, de Reus A , et al. Antiviral activity of interferon in rats and the effect of immune suppression. J Gen Virol, 1984,65(Pt 2):391-396.
[26]   Johnson J E, Nasar F, Coleman J W , et al. Neurovirulence properties of recombinant vesicular stomatitis virus vectors in non-human primates. Virology, 2007,360(1):36-49.
[27]   Gray Z, Tabarraei A, Moradi A , et al. M51r and delta-m51 matrix protein of the vesicular stomatitis virus induce apoptosis in colorectal cancer cells. Mol Biol Rep, 2019,46(3):3371-3379.
doi: 10.1007/s11033-019-04799-3 pmid: 31006094
[28]   Day G L, Bryan M L, Northrup S A , et al. Immune effects of m51r vesicular stomatitis virus treatment of carcinomatosis from colon cancer. J Surg Res, 2020,245:127-135.
doi: 10.1016/j.jss.2019.07.032 pmid: 31415934
[29]   Ammayappan A, Nace R, Peng K W , et al. Neuroattenuation of vesicular stomatitis virus through picornaviral internal ribosome entry sites.[J] Virol. 2013,87(6):3217-3228.
[30]   Janelle V, Brassard F, Lapierre P , et al. Mutations in the glycoprotein of vesicular stomatitis virus affect cytopathogenicity: potential for oncolytic virotherapy. J Virol, 2011,85(13):6513-6520.
[31]   Roberts A, Kretzschmar E, Perkins A S , et al. Vaccination with a recombinant vesicular stomatitis virus expressing an influenza virus hemagglutinin provides complete protection from influenza virus challenge. J Virol, 1998,72(6):4704-4711.
pmid: 9573234
[32]   Duntsch C D, Zhou Q, Jayakar H R , et al. Recombinant vesicular stomatitis virus vectors as oncolytic agents in the treatment of high-grade gliomas in an organotypic brain tissue slice-glioma coculture model. J Neurosurg, 2004,100(6):1049-1059.
[33]   Ammayappan A, Peng K W, Russell S J . Characteristics of oncolytic vesicular stomatitis virus displaying tumor-targeting ligands. J Virol, 2013,87(24):13543-13555.
pmid: 24089573
[34]   Ayala-Breton C, Russell L O, Russell S J , et al. Faster replication and higher expression levels of viral glycoproteins give the vesicular stomatitis virus/measles virus hybrid vsv-fh a growth advantage over measles virus. J Virol, 2014,88(15):8332-8339.
[35]   Van den Pol A N, Mao G, Chattopadhyay A , et al. Chikungunya, influenza, nipah, and semliki forest chimeric viruses with vesicular stomatitis virus: actions in the brain. J Virol, 2017,91(6):e02154-02116.
pmid: 28077641
[36]   Wollmann G, Drokhlyansky E, Davis J N , et al. Lassa-vesicular stomatitis chimeric virus safely destroys brain tumors. J Virol, 2015,89(13):6711-6724.
doi: 10.1128/JVI.00709-15 pmid: 25878115
[37]   Muik A, Stubbert L J, Jahedi R Z , et al. Re-engineering vesicular stomatitis virus to abrogate neurotoxicity, circumvent humoral immunity, and enhance oncolytic potency. Cancer Res, 2014,74(13):3567-3578.
[38]   Iverson L E, Rose J K . Localized attenuation and discontinuous synthesis during vesicular stomatitis virus transcription. Cell, 1981,23(2):477-484.
pmid: 6258804
[39]   Flanagan E B, Schoeb T R, Wertz G W . Vesicular stomatitis viruses with rearranged genomes have altered invasiveness and neuropathogenesis in mice. J Virol, 2003,77(10):5740-5748.
pmid: 12719567
[40]   Van den Pol A N, Davis J N . Highly attenuated recombinant vesicular stomatitis virus vsv-12'gfp displays immunogenic and oncolytic activity. J Virol, 2013,87(2):1019-1034.
doi: 10.1128/JVI.01106-12 pmid: 23135719
[41]   Muik A, Dold C, Geiss Y , et al. Semireplication-competent vesicular stomatitis virus as a novel platform for oncolytic virotherapy. J Mol Med (Berl), 2012,90(8):959-970.
[42]   Kelly E J, Nace R, Barber G N , et al. Attenuation of vesicular stomatitis virus encephalitis through microrna targeting. J Virol, 2010,84(3):1550-1562.
pmid: 19906911
[43]   Edge R E, Falls T J, Brown C W , et al. A let-7 microrna-sensitive vesicular stomatitis virus demonstrates tumor-specific replication. Mol Ther, 2008,16(8):1437-1443.
doi: 10.1038/mt.2008.130 pmid: 18560417
[44]   Power A T, Wang J, Falls T J , et al. Carrier cell-based delivery of an oncolytic virus circumvents antiviral immunity. Mol Ther, 2007,15(1):123-130.
pmid: 17164783
[45]   Muharemagic D, Zamay A, Ghobadloo S M , et al. Aptamer-facilitated protection of oncolytic virus from neutralizing antibodies. Mol Ther Nucleic Acids, 2014,3:e167.
pmid: 24892725
[46]   Tesfay M Z, Kirk A C, Hadac E M , et al. Pegylation of vesicular stomatitis virus extends virus persistence in blood circulation of passively immunized mice. J Virol, 2013,87(7):3752-3759.
doi: 10.1128/JVI.02832-12 pmid: 23325695
[47]   Altomonte J, Wu L, Chen L , et al. Exponential enhancement of oncolytic vesicular stomatitis virus potency by vector-mediated suppression of inflammatory responses in vivo. Mol Ther, 2008,16(1):146-153.
[48]   Wu L, Huang T G, Meseck M , et al. Rvsv(m delta 51)-m3 is an effective and safe oncolytic virus for cancer therapy. Hum Gene Ther, 2008,19(6):635-647.
[49]   Kannan K, Amariglio N, Rechavi G , et al. DNA microarrays identification of primary and secondary target genes regulated by p53. Oncogene, 2001,20(18):2225-2234.
[50]   Heiber J F, Barber G N . Vesicular stomatitis virus expressing tumor suppressor p53 is a highly attenuated, potent oncolytic agent. J Virol, 2011,85(20):10440-10450.
[51]   Hastie E, Cataldi M, Steuerwald N , et al. An unexpected inhibition of antiviral signaling by virus-encoded tumor suppressor p53 in pancreatic cancer cells. Virology, 2015,483:126-140.
doi: 10.1016/j.virol.2015.04.017 pmid: 25965802
[52]   Yamamoto S, Suzuki S, Hoshino A , et al. Herpes simplex virus thymidine kinase/ganciclovir-mediated killing of tumor cell induces tumor-specific cytotoxic t cells in mice. Cancer Gene Ther. 1997,4(2):91-96.
[53]   Fernandez M, Porosnicu M, Markovic D , et al. Genetically engineered vesicular stomatitis virus in gene therapy: application for treatment of malignant disease. J Virol, 2002,76(2):895-904.
doi: 10.1128/jvi.76.2.895-904.2002 pmid: 11752178
[54]   Kanai F, Kawakami T, Hamada H , et al. Adenovirus-mediated transduction of Escherichia coli uracil phosphoribosyltransferase gene sensitizes cancer cells to low concentrations of 5-fluorouracil. Cancer Res, 1998,58(9):1946-1951.
pmid: 9581837
[55]   Adachi Y, Tamiya T, Ichikawa T , et al. Experimental gene therapy for brain tumors using adenovirus-mediated transfer of cytosine deaminase gene and uracil phosphoribosyltransferase gene with 5-fluorocytosine. Hum Gene Ther, 2000,11(1):77-89.
doi: 10.1089/10430340050016175 pmid: 10646641
[56]   Erbs P, Regulier E, Kintz J , et al. In vivo cancer gene therapy by adenovirus-mediated transfer of a bifunctional yeast cytosine deaminase/uracil phosphoribosyltransferase fusion gene. Cancer Res, 2000,60(14):3813-3822.
pmid: 10919655
[57]   Chung-Faye G A, Chen M J, Green N K , et al. In vivo gene therapy for colon cancer using adenovirus-mediated, transfer of the fusion gene cytosine deaminase and uracil phosphoribosyltransferase. Gene Ther, 2001,8(20):1547-1554.
doi: 10.1038/sj.gt.3301557 pmid: 11704815
[58]   Leveille S, Samuel S, Goulet M L , et al. Enhancing vsv oncolytic activity with an improved cytosine deaminase suicide gene strategy. Cancer Gene Ther, 2011,18(6):435-443.
doi: 10.1038/cgt.2011.14 pmid: 21394109
[59]   Porosnicu M, Mian A, Barber G N . The oncolytic effect of recombinant vesicular stomatitis virus is enhanced by expression of the fusion cytosine deaminase/uracil phosphoribosyltransferase suicide gene. Cancer Res, 2003,63(23):8366-8376.
pmid: 14678998
[60]   Ebert O, Shinozaki K, Kournioti C , et al. Syncytia induction enhances the oncolytic potential of vesicular stomatitis virus in virotherapy for cancer. Cancer Res, 2004,64(9):3265-3270.
doi: 10.1158/0008-5472.can-03-3753 pmid: 15126368
[61]   Le Boeuf F, Gebremeskel S, McMullen N , et al. Reovirus fast protein enhances vesicular stomatitis virus oncolytic virotherapy in primary and metastatic tumor models. Mol Ther Oncolytics, 2017,6:80-89.
[62]   Samuel S, Beljanski V, Van Grevenynghe J , et al. Bcl-2 inhibitors sensitize therapy-resistant chronic lymphocytic leukemia cells to vsv oncolysis. Mol Ther, 2013,21(7):1413-1423.
doi: 10.1038/mt.2013.91 pmid: 23689597
[63]   Dobson C C, Naing T, Beug S T , et al. Oncolytic virus synergizes with smac mimetic compounds to induce rhabdomyosarcoma cell death in a syngeneic murine model. Oncotarget. 2017,8(2):3495-3508.
doi: 10.18632/oncotarget.13849 pmid: 27966453
[64]   Altomonte J, Braren R, Schulz S , et al. Synergistic antitumor effects of transarterial viroembolization for multifocal hepatocellular carcinoma in rats. Hepatology, 2008,48(6):1864-1873.
doi: 10.1002/hep.22546 pmid: 19003878
[65]   Goel A, Carlson S K, Classic K L , et al. Radioiodide imaging and radiovirotherapy of multiple myeloma using vsv(delta51)-nis, an attenuated vesicular stomatitis virus encoding the sodium iodide symporter gene. Blood, 2007,110(7):2342-2350.
doi: 10.1182/blood-2007-01-065573 pmid: 17515401
[66]   Shin E J, Wanna G B, Choi B , et al. Interleukin-12 expression enhances vesicular stomatitis virus oncolytic therapy in murine squamous cell carcinoma. Laryngoscope, 2007,117(2):210-214.
doi: 10.1097/01.mlg.0000246194.66295.d8 pmid: 17204993
[67]   Stephenson K B, Barra N G, Davies E , et al. Expressing human interleukin-15 from oncolytic vesicular stomatitis virus improves survival in a murine metastatic colon adenocarcinoma model through the enhancement of anti-tumor immunity. Cancer Gene Ther, 2012,19(4):238-246.
doi: 10.1038/cgt.2011.81
[68]   Miller J M, Bidula S M, Jensen T M , et al. Vesicular stomatitis virus modified with single chain il-23 exhibits oncolytic activity against tumor cells in vitro and in vivo. Int J Interferon Cytokine Mediat Res, 2010,2010(2):63-72.
doi: 10.2147/ijicmr.s9528 pmid: 20556219
[69]   Wongthida P, Diaz R M, Galivo F , et al. Type iii ifn interleukin-28 mediates the antitumor efficacy of oncolytic virus vsv in immune-competent mouse models of cancer. Cancer Res, 2010,70(11):4539-4549.
doi: 10.1158/0008-5472.CAN-09-4658 pmid: 20484025
[70]   Leveille S, Goulet M L, Lichty B D , et al. Vesicular stomatitis virus oncolytic treatment interferes with tumor-associated dendritic cell functions and abrogates tumor antigen presentation. J Virol, 2011,85(23):12160-12169.
doi: 10.1128/JVI.05703-11
[71]   Galivo F, Diaz R M, Thanarajasingam U , et al. Interference of cd40l-mediated tumor immunotherapy by oncolytic vesicular stomatitis virus. Hum Gene Ther, 2010,21(4):439-450.
doi: 10.1089/hum.2009.143 pmid: 19922169
[72]   Obuchi M, Fernandez M, Barber G N . Development of recombinant vesicular stomatitis viruses that exploit defects in host defense to augment specific oncolytic activity. J Virol, 2003,77(16):8843-8856.
doi: 10.1128/jvi.77.16.8843-8856.2003 pmid: 12885903
[73]   Pulido J, Kottke T, Thompson J , et al. Using virally expressed melanoma cdna libraries to identify tumor-associated antigens that cure melanoma. Nat Biotechnol, 2012,30(4):337-343.
doi: 10.1038/nbt.2157 pmid: 22426030
[74]   Cockle J V, Rajani K, Zaidi S , et al. Combination viroimmunotherapy with checkpoint inhibition to treat glioma, based on location-specific tumor profiling. Neuro Oncol, 2016,18(4):518-527.
doi: 10.1093/neuonc/nov173 pmid: 26409567
[75]   Blanchard M, Shim K G, Grams M P , et al. Definitive management of oligometastatic melanoma in a murine model using combined ablative radiation therapy and viral immunotherapy. Int J Radiat Oncol Biol Phys, 2015,93(3):577-587.
doi: 10.1016/j.ijrobp.2015.07.2274 pmid: 26461000
[76]   Rommelfanger D M, Wongthida P, Diaz R M , et al. Systemic combination virotherapy for melanoma with tumor antigen-expressing vesicular stomatitis virus and adoptive t-cell transfer. Cancer Res, 2012,72(18):4753-4764.
doi: 10.1158/0008-5472.CAN-12-0600 pmid: 22836753
[77]   Rommelfanger D M, Compte M, Diaz R M , et al. The efficacy versus toxicity profile of combination virotherapy and tlr immunotherapy highlights the danger of administering tlr agonists to oncolytic virus-treated mice. Mol Ther, 2013,21(2):348-357.
doi: 10.1038/mt.2012.204
[78]   Shen W, Patnaik M M, Ruiz A , et al. Immunovirotherapy with vesicular stomatitis virus and pd-l1 blockade enhances therapeutic outcome in murine acute myeloid leukemia. Blood, 2016,127(11):1449-1458.
doi: 10.1182/blood-2015-06-652503 pmid: 26712908
[79]   Durham N M, Mulgrew K, McGlinchey K , et al. Oncolytic vsv primes differential responses to immuno-oncology therapy. Mol Ther, 2017,25(8):1917-1932.
doi: 10.1016/j.ymthe.2017.05.006 pmid: 28578991
[80]   Wu C, Wu M, Liang M , et al. A novel oncolytic virus engineered with pd-l1 scfv effectively inhibits tumor growth in a mouse model. Cell Mol Immunol, 2019,16(9):780-782.
doi: 10.1038/s41423-019-0264-7 pmid: 31363172
[81]   Publicover J, Ramsburg E, Robek M , et al. Rapid pathogenesis induced by a vesicular stomatitis virus matrix protein mutant: viral pathogenesis is linked to induction of tumor necrosis factor alpha. J Virol, 2006,80(14):7028-7036.
doi: 10.1128/JVI.00478-06 pmid: 16809308
[82]   Jenks N, Myers R, Greiner S M , et al. Safety studies on intrahepatic or intratumoral injection of oncolytic vesicular stomatitis virus expressing interferon-beta in rodents and nonhuman primates. Hum Gene Ther, 2010,21(4):451-462.
doi: 10.1089/hum.2009.111 pmid: 19911974
[83]   Vyriad I . Administration of vsv-ifnβ-nis monotherapy and in combination with avelumab in patients with refractory solid tumors. [2020-01-02]. https://clinicaltrials.gov/ct2/show/NCT02923466?term=VSV&cond=CANCER&draw=2&rank=1.
[84]   Vyriad I . Combination therapy with intravenous vsv-ifnβ-nis and pembrolizumab in refractory nsclc and hnscc. [2020-01-02]. https://clinicaltrials.gov/ct2/show/NCT03647163?term=VSV&cond=CANCER&draw=2&rank=2.
[85]   Clinic M . Vsv-hifnbeta-nis in treating patients with stage iv or recurrent endometrial cancer. [2020-01-02]. https://clinicaltrials.gov/ct2/show/NCT03120624?term=VSV&cond=CANCER&draw=2&rank=3.
[86]   Clinic M . Vsv-hifnbeta-nis in treating patients with relapsed or refractory multiple myeloma, acute myeloid leukemia, or t-cell lymphoma. [2020-01-02]. https://clinicaltrials.gov/ct2/show/NCT03017820?term=VSV&cond=CANCER&draw=2&rank=6.
[87]   Clinic M . Viral therapy in treating patient with refractory liver cancer or advanced solid tumors. [2020-01-02]. https://clinicaltrials.gov/ct2/show/NCT01628640?term=VSV&cond=CANCER&draw=2&rank=5.
[88]   Clinic M . Modified virus vsv-ifnbetatyrp1 in treating patients with stage iii-iv melanoma. [2020-01-02]. https://clinicaltrials.gov/ct2/show/NCT03865212?term=VSV&cond=CANCER&draw=2&rank=7.
[1] ZHAO Meng-ze,LI Feng-zhi,WANG Peng-yin,LI Jian,XU Han-mei. Research Progress of Dual-target Blocking Therapy of PD-L1 and VEGF[J]. China Biotechnology, 2021, 41(9): 71-77.
[2] LV Hui-zhong,ZHAO Chen-chen,ZHU Lian,XU Na. Progress of Using Exosome for Drug Targeted Delivery in Tumor Therapy[J]. China Biotechnology, 2021, 41(5): 79-86.
[3] YUAN Bo,WANG Jie-wen,KANG Guang-bo,HUANG He. Research Progress and Application of Bispecific Nanobody[J]. China Biotechnology, 2021, 41(2/3): 78-88.
[4] DENG Rui,ZENG Jia-li,LU Xue-mei. Screening and Structure-activity Relationship Analysis of Anti-tumor Derived Peptides Based on Musca domestica cecropin[J]. China Biotechnology, 2021, 41(11): 14-22.
[5] LIN Shi-xin,LIU Dong-chen,LEI Yun,XIONG Sheng,XIE Qiu-ling. Screening, Expression and Specificity Detection of Anti-TNF-α Nanobody[J]. China Biotechnology, 2020, 40(7): 15-21.
[6] YANG Wei,SONG Fang-xiang,WANG Shuai,ZHANG Li,WANG Hong-xia,LI Yan. Preparation and Application of Janus Nanoparticles in Drug Delivery System[J]. China Biotechnology, 2020, 40(7): 70-81.
[7] TONG Mei,CHENG Yong-qing,LIU Jin-yi,XU Chen. Construction of a Strain for Promoting Production of Small Molecule Antibodies in Periplasmic Space of Escherichia coli[J]. China Biotechnology, 2020, 40(5): 48-56.
[8] DAI Qi-nan,ZHANG Jing-hong. Advances in Molecular Mechanisms Related to Tumor Multi-drug Resistance, Autophagy, DNA Repair and Tumor Stem Cells[J]. China Biotechnology, 2020, 40(4): 69-77.
[9] QIAN Ying,QIAN Chen,BAI Xiao-qing,WANG Jing-jing. Application of Adjuvant in Cancer Immunotherapy[J]. China Biotechnology, 2020, 40(3): 96-103.
[10] XIAO Xue-jun,TANG Qi,XINHUA Nabi. CAR-T Therapy Targeting Tumor Microenvironment[J]. China Biotechnology, 2020, 40(12): 67-74.
[11] HE Xun,ZHANG Peng,ZHANG Jun-xiang. Progress in the Construction and Application of Organoids[J]. China Biotechnology, 2020, 40(12): 82-87.
[12] ZHU Yongzhao,TAO Jin,REN Meng-meng,XIONG Ran,HE Ya-qin,ZHOU Yu,LU Zhen-hui,DU Yong,YANG Zhi-hong. Autophagy Protects Against Apoptosis of Human Placental Mesenchymal Stem Cells of Fetal Origin Induced by Tumor Necrosis Fator-α[J]. China Biotechnology, 2019, 39(9): 62-67.
[13] LIU Yan,DAI Peng,ZHU Yun-feng. Research Progress of Exosome as Tumor Marker[J]. China Biotechnology, 2019, 39(8): 74-79.
[14] Hai-yin LV,Teng-fei WANG,Ren-jun PEI. Progress in Aptamer Based Tumor Immunotherapy[J]. China Biotechnology, 2019, 39(6): 55-61.
[15] Zhen-hu LI,Yun-fei WU,Ying PAN,Zhao-xiang REN,Xiang-chao GU,Liang TANG,Xin-zhong WANG,Juan ZHANG. The Development of Immuno-oncology Therapy and the Biomarker Research[J]. China Biotechnology, 2019, 39(2): 38-48.