Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (6): 20-30    DOI: 10.13523/j.cb.1912034
    
Characterization of Promoters in the Glycolytic Pathway and Tricarboxylic Acid Cycle of E. coli and Its Application
XUAN Mei-juan,ZHANG Xiao-yun,GAO Ying,Li-GAO Ying,WU Jia-jing,MA Mei,WANG Yan-mei,KOU Hang,LU Fu-ping,LI Ming()
Key Laboratory of Industrial Fermentation Microbiology(Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Biotechnology College, Tianjin University of Science and Technology, Tianjin 300457, China
Download: HTML   PDF(1051KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The promoters are important components that regulate gene transcription, and key parts in synthetic biology research and cell factory design. Glycolytic pathway and tricarboxylic acid (TCA) cycle are the central metabolisms of carbohydrate catabolism and are strictly regulated by promoter strength. In order to screen some endogenous constitutive promoters with various strength necessary for synthetic biology studies and cell factory design of Escherichia coli, the strength and core structural elements of 27 promoters in glycolytic pathway and TCA cycle of E. coli were systematically studied using the red fluorescent protein (RFP) mCherry as the reporter gene and online analysis software. The results showed that the strength range of these promoters varied greatly, and the strength of the strongest promoter PgapA was 43.6 times that of the weakest promoter PacnA. Moreover, the -10 and -35 sequences of promoters are not exactly same as their consistent sequences, and the spacer between them is 17±3 bp. However, the strength of the promoters was basically consistent with the structural characteristics of the promoters. Using the strongest promoter PgapA, Phosphoenolpyruvate carboxylase and pyruvate kinase were expressed in recombinant E. coli DH5αΔpck, respectively. Their enzyme activity was increased by 0.32 and 1.57 times, respectively, and the production of citric acid was also increased by 124.7% and 75.5%. These promoters with different strength have laid a foundation for the study of synthetic biology and the design of cell factory of E. coli.



Key wordsPromoter      Glycolytic pathway      Tricarboxylic acid cycle      Pyruvate kinase      Phosphoenolpyruvate carboxylase     
Received: 20 December 2019      Published: 23 June 2020
ZTFLH:  Q814  
Corresponding Authors: Ming LI     E-mail: liming09@tust.edu.cn
Cite this article:

XUAN Mei-juan,ZHANG Xiao-yun,GAO Ying,Li-GAO Ying,WU Jia-jing,MA Mei,WANG Yan-mei,KOU Hang,LU Fu-ping,LI Ming. Characterization of Promoters in the Glycolytic Pathway and Tricarboxylic Acid Cycle of E. coli and Its Application. China Biotechnology, 2020, 40(6): 20-30.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.1912034     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I6/20

Strains or plasmids Relevant characteristics Reference
Escherichia coli DH5α Cloning host This lab
DH5αΔpck DH5α, ΔacnB, ΔldhA, Δpckppc This lab
DH5α-PPC DH5αΔpck containing pET-gapA-PPC This work
DH5α-PykF DH5αΔpck containing pET-gapA-PykF This work
pET-RFP Plasmid containing mCherry, ampr, cmr This lab
pETM6 Expression plasmid, ampr Prof. Koffas
pET-promoter-RFP Plasmids containing cloned promoter and mCherry This work
pET-gapA-PPC Plasmid containing PgapA and ppc This work
pET-gapA-PykF Plasmid containing PgapA and pykF This work
Table 1 Strains and plasmids used in this work
Fig.1 Pathway of EMP and TCA cycle in E. coli glk: Glucokinase; pgm: Phosphoglucomutase; pgi: Glucose-6-phosphate isomerase; pfkA: Phosphofructokinase I; pfkB: phosphofructokinase II; fbaB: Fructose-1,6-diphosphate aldozyme I: fbaA: Fructose-1,6-diphosphate aldozyme II; gapA: Glyceraldehyde-3-phosphate dehydrogenase; pgk: Phosphoglycerate kinase; gpmA: Phosphoglycerate mutase I; gpmM: Phosphoglycerate mutase III; eno: Enolase; pykF: Pyruvate kinase I; pykA: Pyruvate kinase II; aceE: Pyruvate dehydrogenase complex; gltA: Citrate synthase; acnA: Aconitase I; acnB: Aconitase II; icd: Isocitrate dehydrogenase; sucA: α-ketoglutarate dehydrogenase A; sucB: α-ketoglutarate dehydrogenase; sucC: Succinate thiokinase C; sucD: Succinate thiokinase D; sdh: succinate dehydrogenase; frd: Fumarate reductase; fum: Fumarate hydratase; mqo: Aalate dehydrogenase; mdh: Malate dehydrogenase; ldhA: Lactate dehydrogenase
Number Gene Primer name and primer sequence(5'→3') Restriction site
1 glk glkF: CAGGATCCGGCATCGCTGCAATTGGTGC BamH Ⅰ
glkR: GGGGTACCACTGCTCCGCTAAAGTCAAAATAATTCTTT Kpn
2 pgm pgmF: CGGGATCCCGCGTTGTCGGGTTAGGGTATTAT BamH Ⅰ
pgmR: CCGGTACCATCCAGTGCAGTGTCTTAGCTGAATAC Kpn
3 pgi pgiF: CGGGATCCACTGGCTCCTCCAACACCGTTACTT BamH Ⅰ
pgiR: CCGGTACCTACTCTTCTGATTTTGAGAATTGTGAC Kpn
4 pfkA pfkAF: GACGGATCCCAGGGAGGGTAAACGGTCTATGCTT BamH Ⅰ
pfkAR: CCGGTACCTACCTCTGAACTTTGGAATGCAA Kpn
5 pfkB pfkBF: CCGGATCCAAGGATCAAAGATTAGCGTCCCTGG BamH Ⅰ
pfkBR: CGGGTACCTCCTCCTATAGGCTGATTTCAGTCTG Kpn
6 fbaB fbaBF: CCGGATCCAGGTAATGTAAGGTACGCGATGACAA BamH Ⅰ
fbaBR: CCGGTACCTGCTCCCGTAAATTCCGATTGG Kpn
7 fbaA fbaAF: CCGGATCCTCATACTCTAAATAATTCGAGTTGCAGGAA BamH Ⅰ
fbaAR: CCGGTACCTGTCCTGTATCGTCGGGCCTTATA Kpn
8 gapA gapAF: CAGGATCCGGCTGCACCTAAATCGTGATGAA BamH Ⅰ
gapAR: CCGGTACCTCCACCAGCTATTTGTTAGTGAATAAAAG Kpn
Number Gene Primer name and primer sequence(5'→3') Restriction site
9 pgk pgkF: GCGGATCCGTCAGATAAATGTCTTCTTCGGCTGGA BamH Ⅰ
pgkR: CCGGTACCCTCCTGCAAGGTTTTCCCTGAGCAA Kpn
10 gpmA gpmAF: CCGGATCCGTTCAAATCACCAGCAAACACCGACAT BamH Ⅰ
gpmAR: CCGGTACCTACTCCTCAAATCATCTTTTAATGATAATAATT Kpn
11 gpmM gpmMF: CTGGATCCCGCGTTAACTGGAATGCAATTT BamH Ⅰ
gpmMR: CCGGTACCAACCTCATACTCAAGAGTCAAAATTTGCG Kpn
12 eno enoF: CGGGATCCTTGCCAGTTCCATCCGGAGTTT BamH Ⅰ
enoR: CCGGTACCTTCCTCAAGTCACTAGTTAAACTGAAACTCC Kpn
13 pykF pykFF: GGGGATCCTATAATGCGCGCCAATTGACT BamH Ⅰ
pykFR: CCGGTACCGTCTTAGTCTTTAAGTTGAGAAGGATGGG Kpn
14 pykA pykAF: GTGGATCCGGTCAAAGAAGCGCTGAAGGAA BamH Ⅰ
pykAR: GGGGTACCTACTCCGTTGACTGAAACAACCAGG Kpn
15 aceE aceEF: CCGGATCCTCTCTGCGTCGTCTGGAGCAAC BamH Ⅰ
aceEhR: CCGGTACCTATTCCTTATCTATCTAATAACGTTGAGTTTTCT Kpn
16 gltA gltAF: CCGGATCCAGTGTGGAAGTATTGACCAATTCATTC BamH Ⅰ
gltAR: CTGGTACCTCTCCTTAGCGCCTTATTGCG Kpn
17 acnA acnAF: CGGGATCCATGCCAGCATAGTGACAATGAAACAG BamH Ⅰ
acnAR: CCGGTACCCCTCCTTAATGACAGGGTTGCG Kpn
18 acnB acnBF: CCGGATCCGATTATCACCATGCGAATTAACG BamH Ⅰ
acnBR: CCGGTACCTCTCCTCGCTCTCATTGTCATAGT Kpn
19 icd icdF: CGGGATCCTTATAGCCTAATAACGCGCATCTTTCAT BamH Ⅰ
icdR: CCGGTACCCTCTCCTTCGAGCGCTACTGGTTT Kpn
20 sucA/B sucA,sucBF: TGGGATCCTTATCCGGCCTACAAGTCATTACCC BamH Ⅰ
sucA,sucBR: ACGGTACCATCCCTTAAGCATCTTTTTTATGC Kpn
21 sucC/D sucC,sucDF: TCGGATCCACCAATGTAGGTCGGATAAGGCG BamH Ⅰ
sucC,sucDR: CCGGTACCTGTCCATCCTTCAGTAATCGTTATC Kpn
22 sdhA/B/C/D sdhF: CCGGATCCCAGCCTATACTGCCGCCAGGT BamH Ⅰ
sdhR: CCGGTACCCGCCCACATGCTGTTCTTATTATTC Kpn
23 frdA/B/C/D frdF: CGGGATCCAGGAATCAAACAGCGGTGGGC BamH Ⅰ
frdR: CCGGTACCTTCCTCCAGATTGTTTTTATCCCACAG Kpn
24 fumA/C fumF: CCGGATCCCATGATCAATCCCTGTTTTAATGTGG BamH Ⅰ
fumR: CCGGTACCCTCTCACTTACTGCCTGGTTTGGTTATG Kpn
25 mqo mqoF: TCGGATCCCGGACGGCATAATATTACGACGC BamH Ⅰ
mqoR: CCGGTACCAATGCCTTACTTTTAGTCGCTTTATTGC Kpn
26 mdh mdhF: CGGGATCCTGAGAAACATGCCTGCGTCACG BamH Ⅰ
mdhR:CCGGTACCCTCCTTATTATATTGATAAACTAAGATATGTTGCTCC Kpn
27 ldhA ldhAF: CGGGATCCTCAGTAATAACAGCGCGAGAACG BamH Ⅰ
ldhAR: CCGGTACCTTCTCCAGTGATGTTGAATCACA Kpn
28 PgapA ETgapAF1: GGCCGCGCGCTGCACCTAAATCGTGATGAAAATC BssH Ⅱ
ETgapAR1: GCTCTAGACAGCTATTTGTTAGTGAATAAAAGGTTGCCTG Xba
29 ppc ETppcF: GGTTAACCATATGAACGAACAATATTCCGCATTGCGT Nde
ETppcR: GGACTAGTTTAGCCGGTATTACGCATACCTGCC Spe
30 pykF ETpykFF: GGTTAACCATATGAAAAAGACCAAAATTGTTTGCACCATC Nde
ETpykFR: GGACTAGTTTACAGGACGTGAACAGATGCGG Spe
Table 2 Primers sequence used for promoters and target genes amplification
Fig.2 Construction of plasmid pET-promoter-RFP
Fig.3 Restriction analysis of recombinant plasmid pET-promoter-RFP
Fig.4 Relative strength of different promoters relative to promoter PacnA
Number Promoter -35sequence
TTGACA
-10sequence
TATAAT
Spacer
(bp)
1 Pglk TTGTTG TACAGT 17
2 Ppgm TATCCG TATACT 17
3 Ppgi ATCACA TACAAT 17
4 PpfkA ATCAAT TATACT 17
5 PpfkB TTCACT CAGACT 18
6 PfbaB TTGCGG TAACAT 19
7 PfbaA ACAAGA TTACAT 17
8 PgapA TTGTAA TATTCA 17
9 Ppgk TTGCTG CAATTT 15
10 PgpmA TTGCTG TATAAT 17
11 PpgmM TTTTAT TAAAAT 14
12 Peno TTGACG TACAA T 17
13 PpykF TTGAAT TAGAAC 20
14 PpykA CTTATA TAATTT 17
15 PaceE ATAAAA TAGAAC 17
16 PgltA TTGATG TAAGTT 15
17 PacnA TTATCA TGTTAT 19
18 PacnB TTAACA TATTCT 17
19 Picd TTGACA TAACAA 17
20 PsucA GGCACG TAGTAT 17
21 PsucC ATGCCT TCTTAT 18
22 PsdhC ACCTCT AATAAT 19
23 PfrdA ATTTCA TATACT 17
24 PfumA GTGTAG TTAACA 17
25 Pmqo TTATAA TATAAT 17
26 Pmdh TTGTAA TAAGGT 17
27 PldhA TTTCAA TAAAAT 17
Table 3 Analysis of functional elements of the promoters
Fig.5 Construction of recombinant plasmid pET-gapA-ppc and pET-gapA-PykF
Fig.6 Restriction analysis of recombinant plasmid pET-gapA-ppc (a) and pET-gapA-PykF (b)
Fig.7 The enzyme activity of PPC (a) and PykF(b)
Fig.8 Production of citric acid of recombination strains
[1]   Dellomonaco C, Clomburg J M, Miller E N , et al. Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature, 2011,476:355-359.
[2]   Machado H B, Dekishima Y, Luo H , et al. A selection platform for carbon chain elongation using the CoA dependent pathway to produce linear higher alcohols. Metab Eng, 2012,14:504-511.
[3]   Choi Y J, Lee S Y . Microbial production of short-chain alkanes. Nature, 2013,502:571-574.
[4]   Kallio P, Pasztor A, Thiel K , et al. An engineered pathway for the biosynthesis of renewable propane. Nat Commun, 2014,5:4731. doi: 10.1038/ncomms5731.
doi: 10.1038/ncomms5731
[5]   Doroshenko V G, Livshits V A, Airich L G , et al. Metabolic engineering of Escherichia coli for the production of phenylalanine and related compounds. Appl Biochem Microbiol, 2015,51(7):733-750.
[6]   Yim H, Haselbeck R, Niu W , et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol, 2011,7:445-452.
pmid: 21602812
[7]   Barton N R, Burgard A P, Burk M J , et al. An integrated biotechnology platform for developing sustainable chemical processes. J Ind Microbiol Biotechnol, 2015,42:349-360.
[8]   Xia X X, Qian Z G, Ki C S , et al. Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc Natl Acad Sci USA, 2010,107:14059-14063.
[9]   Yang J E, Choi Y J, Lee S J , et al. Metabolic engineering of Escherichia coli for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose. Appl Microbiol Biotechnol, 2014,98:95-104.
[10]   Choi K R, Shin J H, Cho J S , et al. Systems metabolic engineering of Escherichia coli. EcoSal Plus, 2016, doi: 10.1128/ecosalplus.ESP-0010-2015.
doi: 10.1128/ecosalplus.ESP-0010-2015 pmid: 30681066
[11]   Nandagopal N, Elowitz M B . Synthetic biology: integrated gene circuits. Science, 2011,333:1244-1248.
[12]   Engstrom M D, Pfleger B F . Transcription control engineering and applications in synthetic biology. Synth Syst Biotechnol, 2017,2:176-191.
[13]   Chen X L, Gao C, Guo L , et al. DCEO biotechnology: tools to design, construct, evaluate, and optimize the metabolic pathway for biosynthesis of chemicals. Chem Rev, 2018,118:4-72.
pmid: 28443658
[14]   Alper H, Fischer C, Nevoigt E , et al. Tuning genetic control through promoter engineering. Proc Natl Acad Sci USA, 2005,102:12678-12683.
doi: 10.1073/pnas.0504604102 pmid: 16123130
[15]   Blount BA, Weenink T, Vasylechko S , et al. Rational diversification of a promoter providing fine-tuned expression and orthogonal regulation for synthetic biology. PLoS One, 2012,7(3):e33279-e332809.
[16]   Xu N, Wei L, Liu J . Recent advances in the applications of promoter engineering for the optimization of metabolite biosynthesis. World J Microb Biot, 2019,35:33.
[17]   Sendy B . Studies on transcription in Escherichia coli. Birmingham: University of Birmingham, 2017.
[18]   Chae T U, Choi S Y, Kim J W , et al. Recent advances in systems metabolic engineering tools and strategies. Curr Opin Biotechnol, 2017,47:67-82.
pmid: 28675826
[19]   Zaslaver A, Bren A, Ronen M , et al. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nature Methods, 2006,3(8):623-628.
doi: 10.1038/nmeth895 pmid: 16862137
[20]   Fernie A R, Carrari F, Sweetlove L J . Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol, 2004,7:254-261.
[21]   Shimada T, Yamazaki Y, Tanaka K , et al. The whole set of constitutive promoters recognized by RNA polymerase RpoD holoenzyme of Escherichia coli. PLoS One, 2014,9(3):e90447. doi: 10.1371/journal.pone.0090447.
doi: 10.1371/journal.pone.0090447 pmid: 24603758
[22]   Mohedano M L, García-Cayuela T, Pérez-Ramos A , et al. Construction and validation of a mCherry protein vector for promoter analysis in Lactobacillus acidophilus. J Ind Microbiol Biotechnol, 2015,42(2):247-253.
[23]   陈英, 王培娟, 张文君 , 等. mCherry红色荧光标记乳酸菌的融合表达系统构建及应用. 生物工程学报, 2019,35(3):492-504.
[23]   Chen Y, Wang P J, Zhang W J , et al. Construction and application of mCherry red fluorescent protein fusion expression system in lactic acid bacteria. Chin J Biotech, 2019,35(3):492-504.
[24]   Pietrocola F, Galluzzi L, Bravo-San Pedro J M , et al. Acetyl coenzyme A: a central metabolite and mecond messenger. Cell Metab, 2015,21:805-821.
pmid: 26039447
[25]   Sidoli S, Trefely S, Garcia B A , et al. Integrated analysis of acetyl-CoA and histone modification via mass spectrometry to investigate metabolically driven acetylation. Methods Mol Biol, 2019,1928:125-147.
[26]   Shi L, Tu B P . Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Curr Opin Cell Biol, 2015,33:125-131.
pmid: 25703630
[27]   Akram M . Citric acid cycle and role of its intermediates in metabolism. Cell Biochem Biophys, 2014,68(3):475-478.
[28]   Hopp A K, Grüter P, Hottiger M O . Regulation of glucose metabolism by NAD + and ADP-ribosylation. Cells, 2019,8, 890. doi: 10.3390/cells8080890.
doi: 10.3390/cells8080890
[29]   Tayara H, Tahir M, Chong KT . Identification of prokaryotic promoters and their strength by integrating heterogeneous features. Genomics, 2019, https://doi.org/10.1016/j.ygeno.2019.08.009. In press.
[30]   Solovyev V, Salamov A . Automatic annotation of microbial genomes and metagenomic sequences. In metagenomics and its applications in agriculture, biomedicine and environmental studies. Nova Science Publishers, 2011: 61-78.
[1] BU Kai-xuan,ZHOU Cui-xia,LU Fu-ping,ZHU Chuan-he. Research on the Regulation Mechanism of Bacterial Transcription Initiation[J]. China Biotechnology, 2021, 41(11): 89-99.
[2] ZHU Ya-xin, DUAN Yan-ting, GAO Yu-hao, WANG Ji-yue, ZHANG Xiao-mei, ZHANG Xiao-juan, XU Guo-qiang, SHI Jin-song, XU Zheng-hong. Synthesis and Regulation of Poly-γ-glutamic Acid with Different D/L Monomer Ratios[J]. China Biotechnology, 2021, 41(1): 1-11.
[3] HU Yi-bo,PI Chang-yu,ZHANG Zhe,XIANG Bo-yu,XIA Li-qiu. Recent Advances in Protein Expression System of Filamentous Fungi[J]. China Biotechnology, 2020, 40(5): 94-104.
[4] SHI Chao-shuo,LI Deng-ke,CAO Xue,YUAN Hang,ZHANG Yu-wen,YU Jiang-yue,LU Fu-ping LI Yu. The Effect on Heterologous Expression of Alkaline Protease AprE by Two Different Promoter and Combinatorial[J]. China Biotechnology, 2019, 39(10): 17-23.
[5] HUANG Yu,HUANG Shu-ting,ZHANG Xi-mei,LIU Yan. Cloning and Functional Analysis of the Promoter of HSP70 Gene in Gobiocypris rarus[J]. China Biotechnology, 2019, 39(10): 9-16.
[6] Ya-fang LI,Ying-hui ZHAO,Sai-bao LIU,Wei WANG,Wei-jun ZENG,Jin-quan WANG,Hong-yan CHEN,Qing-wen MENG. Chicken OV Promoter Expressed HA to Protect Chickens from Lethal Challenge of AIV[J]. China Biotechnology, 2018, 38(7): 67-74.
[7] Jia-zhen WANG,Lun-guang YAO,Feng WANG,Yun-chao KAN,Jin-ping LUO,Qian-qian HUANG,Jian-ping DUAN. Cloning and Activity Analysis of a Midgut-specific Promoter in Silkworm (Bombyx mori)[J]. China Biotechnology, 2018, 38(2): 13-17.
[8] ZHANG Ling,WANG Nan,JIN Lv-hua,LIN Rong,YANG Hai-lin. To Promote the Expression of Leucine Dehydrogenase in Bacillus subtilis via Dual-Promoter and Fermentation Research[J]. China Biotechnology, 2018, 38(12): 21-31.
[9] Peng HUANG,Li-ping YAN,Ning ZHANG,Jin-lei SHI. Constitutive Expression of Human Goose-type Lysozyme 2 in Pichia pastoris Using the GAP Promoter[J]. China Biotechnology, 2018, 38(10): 55-63.
[10] Wen-juan CHAI,Qi YANG,Guo-jing LI,Rui-gang WANG. CiMYB15 from Caragana Intermedia Positively Regulates Flavonoids Metabolism of Arabidopsis[J]. China Biotechnology, 2018, 38(10): 8-19.
[11] NIE Yong-qiang, MA Hai-yan, MA Qing-wen. An in vivo Robust System for Generation of Site-specific Integration Minicircle DNA Vector[J]. China Biotechnology, 2017, 37(7): 80-87.
[12] XIA Hui, LIU Lei, WANG Xiu, SHEN Yan-qiu, GUO Yu-lun, LIANG Dong. Research on Stress-inducible Expression Characteristics of Sorbitol-6- phosphate Dehydrogenase Promoter from Apple[J]. China Biotechnology, 2017, 37(6): 50-55.
[13] NI Xuan, GAO Jin-xin, YU Chuan-jin, LIU Tong, LI Ya-qian, CHEN Jie. Bioinformatic Analysis and Promoter Identification of clt-1 Gene in Curvularia Lunata[J]. China Biotechnology, 2017, 37(3): 37-42.
[14] LUO Feng-xue, LI Fo-sheng, YAO Min, XU Ying. The Cloning and Transient Expression Analysis of Promoter of OsHAK26 from Oryza sativa[J]. China Biotechnology, 2017, 37(2): 33-39.
[15] CHEN Min, CHEN Hui, BAO Hai, HUANG Peng, WANG Yan-wei. Advances in the Research of miRNA Promoters in Plants[J]. China Biotechnology, 2016, 36(5): 125-131.