Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (10): 8-19    DOI: 10.13523/j.cb.20181002
Orginal Article     
CiMYB15 from Caragana Intermedia Positively Regulates Flavonoids Metabolism of Arabidopsis
Wen-juan CHAI1,Qi YANG1,2,3,Guo-jing LI1,2,3,Rui-gang WANG1,2,3,**()
1 College of Life Sciences,Inner Mongolia Agricultural University,Hohhot 010018,China
2 Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology,Hohhot 010018,China
3 Inner Mongolia Scientific Innovation Team of Genetic Resource Utilization and Molecular improvement of Stress Resistant Plants, Hohhot 010018, China
Download: HTML   PDF(3396KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: R2R3-MYB transcription factors regulate primary and secondary metabolism in plants.Methods: A R2R3-MYB encoding sequence, characterized and cloned from drought treated transcriptome of Caragana intermedia, was named as CiMYB15. The gene was transferred into Arabidopsis thaliana, and the total flavonoids contents of transgenic lines and wild type were measured by spectrophotometric method, and the expression of AtCHS in transgenic plants was analyzed by qRT-PCR. A 1 580bp fragment of CiMYB15 promoter was isolated by genome walking. The results revealed that: (1) the length of CiMYB15 gDNA was 1 960bp, it’s consisted of three exons (134, 131 and 521 bp) and two introns (281 and 893 bp). The open reading frame (ORF) encodes a polypeptide of 262 amino acids. (2)The main cis-elements of CiMYB15 promoter include abiotic stress responded elements (G-box, P-box, GT1-motif and MBS), biotic stress responded elements (BOX-W1 and EIER), and MYB binding sites of flavonoids synthase regulatory genes. (3) The expression of CiMYB15 was induced by UV-B. (4) Total flavonoids contents of CiMYB15 overexpression plants were higher than that of wild type Arabidopsis. (5) Furthermore, the expression level of AtCHS was increased in transgenic Arabidopsis. In brief, CiMYB15 positively regulated the flavonoids metabolism.



Key wordsCaragana intermedia      Total flavonoids      CiMYB15      Promoter      Chalcone synthase (CHS)     
Received: 07 July 2018      Published: 09 November 2018
ZTFLH:  Q785  
Corresponding Authors: Rui-gang WANG     E-mail: ruigangwang@126.com
Cite this article:

Wen-juan CHAI,Qi YANG,Guo-jing LI,Rui-gang WANG. CiMYB15 from Caragana Intermedia Positively Regulates Flavonoids Metabolism of Arabidopsis. China Biotechnology, 2018, 38(10): 8-19.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20181002     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I10/8

引物名称
Primer name
引物序列
Primer sequence
用途
Usage
CiMYB15-HA5' GCactagtTAAGATTCAGAGCTCTGGCAATTCT ORF和gDNA扩增
CiMYB15-HA3' GCgtcgacATGGTTAGAGCTCCTTGCTGTGAA Amplication of ORF and gDNA
q-CiMYB15-5' CTGTAGACTGCGCTGGATTAACTATC 实时荧光定量PCR
q-CiMYB15-3' GTTCTTCCTGGTAACTTTGCTGCA Real-time quantitative PCR
SP1 GTACCTGTTTCCAAGCAACTCATGC 染色体步移克隆启动子
SP2 CGCAGTCTACAGCTCTTTCCACATC
SP3 GAGGAAGTACCAATTACCAGCATG Genome walking PCR
AtCHS-5' GGTGCCATAGACGGACATT 实时荧光定量PCR
AtCHS-3' TCCATACTCGCTCAACACG Real-time quantitative PCR
AtCHI-5' CTCTATCTGTCAAGTGGAAGG 实时荧光定量PCR
AtCHI-3' GAAAACGCAACCGTAAGAG Real-time quantitative PCR
AtF3H-5' AGAGGCTTATGAGTTTGGC 实时荧光定量PCR
AtF3H-3' TGTAGCAGCAAGGTAATGG Real-time quantitative PCR
AtFLS-5' GGATTCTCTCGGATGGATTAG 实时荧光定量PCR
AtFLS-3' CGCCGATGTGAACAATGAC Real-time quantitative PCR
AtDFR-5' TGGTGGTCGGTCCATTCAT 实时荧光定量PCR
AtDFR-3' GAGAGAGCGCGGTGATAAGG Real-time quantitative PCR
AtEF1α-F AGAAGGGTGCCAAATGATGAG 实时荧光定量PCR
AtEF1α-R CAAAAAGTCCCCTCGTTGTCTC Real-time quantitative PCR
CiEF1α-F AGCAATCGTTCTTCCTAATGATCTAA 实时荧光定量PCR
CiEF1α-R CAAAAAGTCCCCTCGTTGTCTC Real-time quantitative PCR
Table 1 Primers used in gene cloning and functional analysis
Fig.1 Gel electrophoresis of PCR products of CiMYB15 1, 2: The amplified cDNA; 3, 4: The amplified gDNA; M: 1kb DNA ladder
Fig.2 AAAcDNA, gDNA and deduced amino acid sequence of CiMYB15 The underlined parts indicate intron regions
Fig.3 The alignment of amino acid sequence of CiMYB15 and other plant MYBs Sequences in this map are obtained from C. intermedia, A. thaliana, G. max, and M. truncatula from top to bottom; The black full line and dotted line indicates R2 domain and R3 domain respectively, black points indicate IDxSFW-MxFWFD
Fig.4 Phylogenetic analyses of CiMYB15 and other plant MYBs Phylogenetic tree was constructed by Neighbor-Joining method; the value of bootstrap replication was set as 1000.
Fig.5 PCR products of CiMYB15 promoter 1: Product of the first extension; 2: Product of the second extension; 3, 4: Products of the third extension; 5, 6: Products of specific primers; M1: 1kb DNA ladder; M2: DL5000
顺式作用元件名称
Name
顺式作用元件功能
Biological function
序列
Sequence
来源物种
Original species
TATA-box 核心元件 TATA Arabidopsis thaliana
CAAT-box 核心元件 CAAAT Arabidopsis thaliana
ARE 厌氧诱导 TGGTTT Zea mays
ATC-motif 光应答元件 AGTAATCT Spinacia oleracea
BOX-4 光应答元件 ATTAAT Petroselinum crispum
MRE 光应答元件 AACCTAA Petunia hybrida
BOX-W1 真菌侵害应答元件 TTGACC Petroselinum crispum
CCAAT-box MYBHv1结合位点 CAACGG Hordeum vulgare
TCA-element 水杨酸应答元件 CCATCTTTTT Nicotiana tabacum
GAGAAGAATA Brassica oleracea
CGTCA-motif 茉莉酸应答元件 CGTCA Hordeum vulgare
TGACG-motif 茉莉酸应答元件 TGACG Hordeum vulgare
EIER 植物-病原菌互作 TTCGACC Nicotiana tabacum
G-box 损伤诱导/光应答元件 CACATGG Zea mays
P-box 与G-box协同参与损伤反应 CCTTTTG Oryza sativa
CAT-box 分生组织特异性表达元件 GCCACT Arabidopsis thaliana
GAG-motif 光应答元件 AGAGAGT Arabidopsis thaliana
GAP-box 光应答元件 AAATGGAGA Arabidopsis thaliana
GARE-motif 赤霉素响应元件 TCTGTTG Brassica oleracea
GT1-motif 盐诱导作用元件 GGTTAA Arabidopsis thaliana
MBS 参与干旱诱导反应 GTCAT Arabidopsis thaliana
MBSI 参与黄酮合成基因调控 AAAAAAC(G/C)GTTA Arabidopsis thaliana
MNF1 光应答元件 GTGCCC Zea mays
Table 2 Prediction analysis of the CiMYB15 promoter
Fig. 6 CiMYB15 gene expression analysis under UV-B treatment by qRT-PCR CiEF1α was selected as reference gene. The result was calculated by 2-ΔΔCT
Fig.7 The construction of recombinant vector pCanG-CiMYB15 and expression analysis of CiMYB15 in transgenic lines (a) Identification of the recombinant vector pCanG-CiMYB15: 1, Vector control; 2, The recombinant vector digested by Spe I and Sal I (b) RT-PCR assay of CiMYB15 transgenic lines: C-, wild type Arabidopsis cDNA as negative control; C+, Caragana intermedia cDNA as positive control; Other numbers are overexpression lines (c) Expression level of CiMYB15 in transgenic lines was analyzed by qRT-PCR (AtEF1α was selected as reference gene. The result was calculated by 2-ΔCT. Y-axis was Logarithmic). M: 1kb DNA ladder
Fig.8 Total flavonoids content of wild type and transgenic Arabidopsis lines
Fig.9 The detection of flavonoids metabolism related genes from wild type and CiMYB15 transgenic lines AtEF1α was selected as reference gene. The result was calculated by 2-ΔΔCT
[1]   Dubos C, Stracke R, Grotewold E , et al. MYB transcription factors in Arabidopsis. Trends Plant Sci, 2010,15(10):573-581.
doi: 10.1016/j.tplants.2010.06.005
[2]   Feller A, Machemer K, Braun E L , et al. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. The Plant Journal : for Cell and Molecular Biology, 2011,66(1):94-116.
doi: 10.1111/j.1365-313X.2010.04459.x pmid: 21443626
[3]   Ogata K, Hojo H, Aimoto S , et al. Solution structure of a DNA-binding unit of Myb: a helix-turn-helix-related motif with conserved tryptophans forming a hydrophobic core. Proceedings of the National Academy of Sciences of the United States of America, 1992,89(14):6428-6432.
doi: 10.1073/pnas.89.14.6428 pmid: 1631139
[4]   Ogata K, Morikawa S, Nakamura H , et al. Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell, 1994,79(4):639-648.
doi: 10.1016/0092-8674(94)90549-5 pmid: 7954830
[5]   Klempnauer K H, Gonda T J, Bishop J M . Nucleotide sequence of the retroviral leukemia gene v-myb and its cellular progenitor c-myb: the architecture of a transduced oncogene. Cell, 1982,31(2 Pt 1):453-463.
doi: 10.1016/0092-8674(82)90138-6 pmid: 6297766
[6]   Stracke R, Werber M, Weisshaar B . The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology, 2001,4(5):447-456.
doi: 10.1016/S1369-5266(00)00199-0 pmid: 11597504
[7]   Du H, Yang S S, Liang Z , et al. Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biology, 2012,12:106-117.
doi: 10.1186/1471-2229-12-106 pmid: 22776508
[8]   Yanhui C, Xiaoyuan Y, Kun H , et al. The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Molecular Biology, 2006,60(1):107-124.
doi: 10.1007/s11103-005-2910-y pmid: 16463103
[9]   Wilkins O, Nahal H, Foong J , et al. Expansion and diversification of the Populus R2R3-MYB family of transcription factors. Plant Physiology, 2009,149(2):981-993.
doi: 10.1104/pp.108.132795 pmid: 19091872
[10]   杨飞芸, 刘坤, 崔爽 , 等. 转CiCHS基因拟南芥的黄酮代谢及抗氧化能力分析. 西北植物学报, 2018,38(03):393-400.
[10]   Yang F Y, Liu K, Cui S , et al. Metabolism of flavonoids and the antioxidant capacity of transgenic Arabidopsis thaliana expressing CiCHS gene. Acta Bot Boreal- Occident Sin, 2018,38(3):393-400.
[11]   Espana L, Heredia-Guerrero J A, Reina-Pinto J J , et al. Transient silencing of Chalcone Synthase during fruit ripening modifies tomato epidermal cells and cuticle properties. Plant Physiology, 2014,166(3):1371-1386.
doi: 10.1104/pp.114.246405
[12]   Yu H N, Wang L, Sun B , et al. Functional characterization of a chalcone synthase from the liverwort Plagiochasma appendiculatum. Plant Cell Reports, 2015,34(2):233-245.
doi: 10.1007/s00299-014-1702-8 pmid: 25404490
[13]   Baudry A, Heim M A, Dubreucq B , et al. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. The Plant Journal : for Cell and Molecular Biology, 2004,39(3):366-380.
doi: 10.1111/tpj.2004.39.issue-3
[14]   Debeaujon I, Nesi N, Perez P , et al. Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development. Plant Cell, 2003,15(11):2514-2531.
doi: 10.1105/tpc.014043
[15]   Zhou J, Lee C, Zhong R , et al. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell, 2009,21(1):248-266.
doi: 10.1105/tpc.108.063321 pmid: 19122102
[16]   Legay S, Sivadon P, Blervacq A S , et al. EgMYB1, an R2R3 MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation in Arabidopsis and poplar. The New Phytologist, 2010,188(3):774-786.
doi: 10.1111/j.1469-8137.2010.03432.x
[17]   Lacombe E, Van Doorsselaere J, Boerjan W , et al. Characterization of cis-elements required for vascular expression of the cinnamoyl CoA reductase gene and for protein-DNA complex formation. The Plant Journal : for Cell and Molecular Biology, 2000,23(5):663-676.
doi: 10.1046/j.1365-313x.2000.00838.x pmid: 10972892
[18]   Stracke R, Ishihara H, Huep G , et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. The Plant Journal : for Cell and Molecular Biology, 2007,50(4):660-677.
doi: 10.1111/j.1365-313X.2007.03078.x pmid: 1976380
[19]   Schwinn K E, Ngo H, Kenel F , et al. The Onion (Allium cepa L.) R2R3-MYB Gene MYB1 Regulates Anthocyanin Biosynthesis. Frontiers in Plant Science, 2016, 7(1865.
doi: 10.3389/fpls.2016.01865 pmid: 28018399
[20]   Wang N, Xu H, Jiang S , et al. MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple (Malus sieversii f. niedzwetzkyana). The Plant Journal : for Cell and Molecular Biology, 2017,90(2):276-292.
doi: 10.1111/tpj.13487 pmid: 28107780
[21]   Yang Q, Yin J, Li G , et al. Reference gene selection for qRT-PCR in Caragana korshinskii Kom. under different stress conditions. Molecular Biology Reports, 2014,41(4):2325-2334.
doi: 10.1007/s11033-014-3086-9 pmid: 24452712
[22]   于秀敏, 岳文冉, 张燕娜 , 等. 异源表达CkLEA1基因增强了拟南芥对非生物胁迫的耐受性. 中国生物工程杂志, 2016,36(10):28-34.
doi: 10.13523/j.cb.20161005
[22]   Yu X M, Yue W R, Zhang Y N , et al. Heterologous of CkLEA1 Gene Enhanced Tolerance to Abiotic Stress in Arabidopsis. China Biotechnology, 2016,36(10) : 28-34.
doi: 10.13523/j.cb.20161005
[23]   Attitalla I H . Modified CTAB method for high quality genomic DNA extraction from medicinal plants. Pakistan Journal of Biological Sciences : PJBS, 2011,14(21):998-999.
doi: 10.3923/pjbs.2011.998.999 pmid: 22514891
[24]   Chukwumah Y, Walker L T, Verghese M . Peanut skin color: a biomarker for total polyphenolic content and antioxidative capacities of peanut cultivars. International Journal of Molecular Sciences, 2009,10(11):4941-4952.
doi: 10.3390/ijms10114941 pmid: 2808014
[25]   Ding Z, Li S, An X , et al. Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. J Genet Genomics, 2009,36(1):17-29.
doi: 10.1016/S1673-8527(09)60003-5 pmid: 19161942
[26]   Kim S H, Kim H S, Bahk S , et al. Phosphorylation of the transcriptional repressor MYB15 by mitogen-activated protein kinase 6 is required for freezing tolerance in Arabidopsis. Nucleic Acids Research, 2017,45(11):6613-6627.
doi: 10.1093/nar/gkx417
[27]   Holl J, Vannozzi A, Czemmel S , et al. The R2R3-MYB transcription factors MYB14 and MYB15 regulate stilbene biosynthesis in Vitis vinifera. Plant Cell, 2013,25(10):4135-4149.
doi: 10.1105/tpc.113.117127 pmid: 24151295
[28]   Hancock K R, Collette V, Fraser K , et al. Expression of the R2R3-MYB transcription factor TaMYB14 from Trifolium arvense activates proanthocyanidin biosynthesis in the legumes Trifolium repens and Medicago sativa. Plant Physiology, 2012,159(3):1204-1220.
doi: 10.1104/pp.112.195420
[29]   Chu S, Wang J, Zhu Y , et al. An R2R3-type MYB transcription factor, GmMYB29, regulates isoflavone biosynthesis in soybean. PLoS Genetics, 2017,13(5):e1006770.
doi: 10.1371/journal.pgen.1006770 pmid: 5443545
[1] BU Kai-xuan,ZHOU Cui-xia,LU Fu-ping,ZHU Chuan-he. Research on the Regulation Mechanism of Bacterial Transcription Initiation[J]. China Biotechnology, 2021, 41(11): 89-99.
[2] ZHU Ya-xin, DUAN Yan-ting, GAO Yu-hao, WANG Ji-yue, ZHANG Xiao-mei, ZHANG Xiao-juan, XU Guo-qiang, SHI Jin-song, XU Zheng-hong. Synthesis and Regulation of Poly-γ-glutamic Acid with Different D/L Monomer Ratios[J]. China Biotechnology, 2021, 41(1): 1-11.
[3] XUAN Mei-juan,ZHANG Xiao-yun,GAO Ying,Li-GAO Ying,WU Jia-jing,MA Mei,WANG Yan-mei,KOU Hang,LU Fu-ping,LI Ming. Characterization of Promoters in the Glycolytic Pathway and Tricarboxylic Acid Cycle of E. coli and Its Application[J]. China Biotechnology, 2020, 40(6): 20-30.
[4] HU Yi-bo,PI Chang-yu,ZHANG Zhe,XIANG Bo-yu,XIA Li-qiu. Recent Advances in Protein Expression System of Filamentous Fungi[J]. China Biotechnology, 2020, 40(5): 94-104.
[5] YANG Fei-yun,YANG Tian-rui,LIU Kun,CUI Shuang,WANG Rui-gang,LI Guo-jing. Flavonoids Metabolism and Antimicrobial Activity of Arabidopsis Heterologous Expressing CiRS Gene[J]. China Biotechnology, 2019, 39(11): 22-30.
[6] HUANG Yu,HUANG Shu-ting,ZHANG Xi-mei,LIU Yan. Cloning and Functional Analysis of the Promoter of HSP70 Gene in Gobiocypris rarus[J]. China Biotechnology, 2019, 39(10): 9-16.
[7] SHI Chao-shuo,LI Deng-ke,CAO Xue,YUAN Hang,ZHANG Yu-wen,YU Jiang-yue,LU Fu-ping LI Yu. The Effect on Heterologous Expression of Alkaline Protease AprE by Two Different Promoter and Combinatorial[J]. China Biotechnology, 2019, 39(10): 17-23.
[8] Ya-fang LI,Ying-hui ZHAO,Sai-bao LIU,Wei WANG,Wei-jun ZENG,Jin-quan WANG,Hong-yan CHEN,Qing-wen MENG. Chicken OV Promoter Expressed HA to Protect Chickens from Lethal Challenge of AIV[J]. China Biotechnology, 2018, 38(7): 67-74.
[9] Jia-zhen WANG,Lun-guang YAO,Feng WANG,Yun-chao KAN,Jin-ping LUO,Qian-qian HUANG,Jian-ping DUAN. Cloning and Activity Analysis of a Midgut-specific Promoter in Silkworm (Bombyx mori)[J]. China Biotechnology, 2018, 38(2): 13-17.
[10] ZHANG Ling,WANG Nan,JIN Lv-hua,LIN Rong,YANG Hai-lin. To Promote the Expression of Leucine Dehydrogenase in Bacillus subtilis via Dual-Promoter and Fermentation Research[J]. China Biotechnology, 2018, 38(12): 21-31.
[11] Peng HUANG,Li-ping YAN,Ning ZHANG,Jin-lei SHI. Constitutive Expression of Human Goose-type Lysozyme 2 in Pichia pastoris Using the GAP Promoter[J]. China Biotechnology, 2018, 38(10): 55-63.
[12] NIE Yong-qiang, MA Hai-yan, MA Qing-wen. An in vivo Robust System for Generation of Site-specific Integration Minicircle DNA Vector[J]. China Biotechnology, 2017, 37(7): 80-87.
[13] XIA Hui, LIU Lei, WANG Xiu, SHEN Yan-qiu, GUO Yu-lun, LIANG Dong. Research on Stress-inducible Expression Characteristics of Sorbitol-6- phosphate Dehydrogenase Promoter from Apple[J]. China Biotechnology, 2017, 37(6): 50-55.
[14] NI Xuan, GAO Jin-xin, YU Chuan-jin, LIU Tong, LI Ya-qian, CHEN Jie. Bioinformatic Analysis and Promoter Identification of clt-1 Gene in Curvularia Lunata[J]. China Biotechnology, 2017, 37(3): 37-42.
[15] LUO Feng-xue, LI Fo-sheng, YAO Min, XU Ying. The Cloning and Transient Expression Analysis of Promoter of OsHAK26 from Oryza sativa[J]. China Biotechnology, 2017, 37(2): 33-39.