Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (10): 55-63    DOI: 10.13523/j.cb.20181007
Orginal Article     
Constitutive Expression of Human Goose-type Lysozyme 2 in Pichia pastoris Using the GAP Promoter
Peng HUANG1,**,***(),Li-ping YAN2,**,Ning ZHANG3,Jin-lei SHI4
1 College of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
2 Clinical Laboratory, Affiliated Central Hospital of Qingdao University, Qingdao 266042, China
3 College of Basic Medicine, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
4 School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
Download: HTML   PDF(1004KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

This study aimed to achieve the constitutive expression of human goose-type lysozyme 2 (hLysG2) in Pichia pastoris using the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter and to establish an efficient strategy for the production of recombinant hLysG2 (rhLysG2) on a bench scale. The hLysG2 gene was synthesized according to the codon usage preference of P. pastoris and cloned into pGAPZαA vector. The resulting pGAPZαA-hLysG2 plasmid was linearized and transformed into competent P. pastoris GS115, followed by Geneticin screening. The transformants with higher Geneticin resistance were selected to investigate the constitutive expression of rhLysG2 in P. pastoris. The lytic activity of rhLysG2 in the fermentation broth reached its peak after 60h of cultivation. SDS-PAGE and Western blot analysis showed that rhLysG2 was successfully secreted into the fermentation broth. There were a 23.8% increase in the total lytic activity and a 48h reduction in the cultivation time in comparison with those of the P. pastoris strain integrated with the pPIC9K-hLysG2 plasmid. Using chitin affinity and size-exclusion chromatography, rhLysG2 was purified with a yield of 187.4mg/L of fermentation supernatant, above 99.9% purity and a specific activity of 13 500U/mg under the condition of pH 5.6, 0.1mol/L of Na +, 30℃. In conclusion, rhLysG2 was expressed at high level in P. pastoris by codon optimization and had in vitro bactericidal activity against some pathogenic bacteria, which has laid a solid foundation for its possible future pharmaceutical applications.



Key wordsHuman goose-type lysozyme 2      Pichia pastoris      GAP promoter      Constitutive expression      Bactericidal activity     
Received: 16 April 2018      Published: 09 November 2018
ZTFLH:  R392-33R392.11  
Corresponding Authors: Peng HUANG,Li-ping YAN     E-mail: huangp_15@sumhs.edu.cn
Cite this article:

Peng HUANG,Li-ping YAN,Ning ZHANG,Jin-lei SHI. Constitutive Expression of Human Goose-type Lysozyme 2 in Pichia pastoris Using the GAP Promoter. China Biotechnology, 2018, 38(10): 55-63.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20181007     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I10/55

Name Primer sequence (5'-3')
pGAP Forward GTCCCTATTTCAATCAATTGAA
3'-AOX1 GCAAATGGCATTCTGACATCC
hLysG2 Forward TCTTACCCATTTAGTCATTC
hLysG2 Reverse TTAGAAGCTTTGTCTTTTAT
Table 1 Primers used in this study
Fig.1 Identification of recombinant expression plasmid
Fig.2 Identification of recombinant expression plasmid (a) Lane M: DNA marker; Lanes 1~5: Amplification products (b) Lane M: DNA marker; Lane 1: The pGAPZαA-hLysG2 plasmid digested by EcoR I and Not I
Fig.3 Identification of positive transformants by PCR Lane M: DNA marker; Lane 1: pGAPZαA-hLysG2; Lanes 2~3, 5~6 and 8: Positive transformants; Lanes 4 and 7: Negative clones
Fig.4 Increment curve of lytic activity in the fermentation supernatant
Fig.5 SDS-PAGE analysis of the fermentation supernatant Lane M: Molecular weight marker; Lanes 1~6: 10μl of the fermentation supernatant taken at 0h, 12h, 24h, 36h, 48h and 60h
Fig.6 Elution profile of chitin affinity chromatography
Fig.7 SDS-PAGE (upper) and Western blot analysis (bottom) of purified rhLysG2 Lane M: Molecular weight marker; Lanes 1~4: Purified rhLysG2
Fig.8 HPLC analysis of purified rhLysG2
Step Total protein(mg/L) Total lytic activity (× 106U/L) Activity recovery(%)
Supernatant 428 ± 21 3.84 ± 0.28 100.00
After chitin affinity chromatography 301 ± 18 2.70 ± 0.23 70.25
After size-exclusion chromatography 199 ± 17 1.78 ± 0.20 46.38
After centrifugal filtration 184 ± 15 1.64 ± 0.18 42.74
Table 2 Results of the purification of rhLysG2
Fig.9 Effect of pH, ion concentration and temperature on rhLysG2 activity and stability (a) Activities of rhLysG2 at different pH (b) Effect of ion concentration on rhLysG2 activity (c) Effect of temperature on rhLysG2 activity (d) Effect of temperature on the stability of rhLysG2 All values were normalized to the peak activity for each curve (100%)
Ion Na+ Co+ Ca2+ Zn2+ Cu2+ Hg2+ Mn2+ Fe3+
Relative activity(%) 100 31.4 68.5 56.8 0 83.0 78.2 42.3
Table 3 Effect of metal ions on rhLysG2 activity
Fig.10 Bactericidal activity analysis of rhLysG2 ** P< 0.01 vs the control group; * P< 0.05 vs the control group
[1]   Irwin D M . Evolution of the vertebrate goose-type lysozyme gene family. BMC Evolutionary Biology, 2014,14(1):188-202.
doi: 10.1186/s12862-014-0188-x pmid: 4243810
[2]   Weaver L H, Grutter M G, Remington S J , et al. Comparison of goose-type, chicken-type, and phage-type lysozymes illustrates the changes that occur in both amino acid sequence and three-dimensional structure during evolution. Journal of Molecular Evolution, 1985,21(2):97-111.
doi: 10.1007/BF02100084 pmid: 6442995
[3]   Prager E M . Adaptive evolution of lysozyme: changes in amino acid sequence, regulation of expression and gene number. EXS, 1996,75:323-345.
doi: 10.1007/978-3-0348-9225-4_17 pmid: 8765307
[4]   Canfield R E, Mcmurry S . Purification and characterization of a lysozyme from goose egg white. Biochemical and Biophysical Research Communications, 1967,26(1):38-42.
doi: 10.1016/0006-291X(67)90249-5 pmid: 6030253
[5]   Ko J, Wan Q, Bathige S D , et al. Molecular characterization, transcriptional profiling, and antibacterial potential of G-type lysozyme from seahorse (Hippocampus abdominalis). Fish & Shellfish Immunology, 2016,58:622-630.
doi: 10.1016/j.fsi.2016.10.014 pmid: 27732899
[6]   Liu Q N, Xin Z Z, Zhang D Z , et al. Molecular identification and expression analysis of a goose-type lysozyme (LysG) gene in yellow catfish Pelteobagrus fulvidraco. Fish & Shellfish Immunology, 2016,58:423-428.
doi: 10.1016/j.fsi.2016.09.034 pmid: 27645907
[7]   Gao C, Fu Q, Zhou S , et al. The mucosal expression signatures of g-type lysozyme in turbot (Scophthalmus maximus) following bacterial challenge. Fish & Shellfish Immunology, 2016,54:612-619.
doi: 10.1016/j.fsi.2016.05.015 pmid: 27189917
[8]   Wei S, Huang Y, Huang X , et al. Molecular cloning and characterization of a new G-type lysozyme gene (Ec-lysG) in orange-spotted grouper, Epinephelus coioides. Developmental and Comparative Immunology, 2014,46(2):401-412.
doi: 10.1016/j.dci.2014.05.006
[9]   Buonocore F, Randelli E, Trisolino P , et al. Molecular characterization, gene structure and antibacterial activity of a g-type lysozyme from the European sea bass (Dicentrarchus labrax L.). Molecular Immunology, 2014,62(1):10-18.
[10]   Wang R, Feng J, Li C , et al. Four lysozymes (one c-type and three g-type) in catfish are drastically but differentially induced after bacterial infection. Fish & Shellfish Immunology, 2013,35(1):136-145.
doi: 10.1016/j.fsi.2013.04.014 pmid: 23639933
[11]   Guo Y, He H . Identification and characterization of a goose-type lysozyme from sewage snail Physa acuta. Fish & Shellfish Immunology, 2014,39(2):321-325.
doi: 10.1016/j.fsi.2014.05.029 pmid: 24882016
[12]   Huang P, Li W S, Xie J , et al. Characterization and expression of hLysG2, a basic goose- type lysozyme from the human eye and testis. Molecular Immunology, 2011,48(4):524-531.
doi: 10.1016/j.molimm.2010.10.008 pmid: 21093056
[13]   Irwin D M, Gong Z . Molecular evolution of vertebrate goose-type lysozyme genes. Journal of Molecular Evolution, 2003,56(2):234-242.
doi: 10.1007/s00239-002-2396-z
[14]   黄鹏, 杨智昉, 谢君 , 等. 人g2型溶菌酶的多克隆抗体制备及其在睾丸中的表达分析. 免疫学杂志, 2016,32(10):842-847.
[14]   Huang P, Yang Z F, Xie J , et al. Preparation of polyclonal antibody of human goose-type lysozyme 2 and its expression in human testis. Immunology Journal, 2016,32(10):842-847.
[15]   黄鹏, 杨智昉, 鲍建瑛 , 等. 人精浆中g2型溶菌酶的纯化及其酶学活性分析. 细胞与分子免疫学杂志, 2017,33(3):320-325.
[15]   Huang P, Yang Z F, Bao J Y , et al. Purification of human goose-type lysozyme 2 (hLysG2) from human seminal plasma and analysis of its enzymatic properties. Chinese Journal of Cellular and Molecular Immunology, 2017,33(3):320-325.
[16]   Stahlmann R . Antibiotics for treatment of infections by methicillin-resistant Staphylococcus aureus (MRSA). Pneumologie, 2014,68(10):676-684.
doi: 10.1055/s-00000059
[17]   Holmes N E, Howden B P . What’s new in the treatment of serious MRSA infection? Current Opinion in Infectious Diseases, 2014,27(6):471-478.
doi: 10.1097/QCO.0000000000000101 pmid: 25211361
[18]   Daly R, Hearn M T . Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. Journal of Molecular Recognition, 2005,18(2):119-138.
doi: 10.1109/4.953490 pmid: 15565717
[19]   Macauley-Patrick S, Fazenda M L, Mcneil B , et al. Heterologous protein production using the Pichia pastoris expression system. Yeast, 2005,22(4):249-270.
doi: 10.1002/yea.1208 pmid: 15704221
[20]   Jahic M, Veide A, Charoenrat T , et al. Process technology for production and recovery of heterologous proteins with Pichia pastoris. Biotechnology Progress, 2006,22(6):1465-1473.
doi: 10.1002/btpr.v22:6
[21]   Ahmad M, Hirz M, Pichler H , et al. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Applied Microbiology and Biotechnology, 2014,98(12):5301-5317.
doi: 10.1007/s00253-014-5732-5 pmid: 4047484
[22]   Romanose M A, Scorer C A, Clare J J . Foreign gene expression in yeast: a review. Yeast, 1992,8(6):423-488.
doi: 10.1002/yea.320080602 pmid: 1502852
[23]   Waterham H R, Digan M E, Koutz P J , et al. Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene, 1997,186(1):37-44.
doi: 10.1016/S0378-1119(96)00675-0 pmid: 9047342
[24]   Zhang A L, Luo J X, Zhang T Y , et al. Constitutive expression of human angiostatin in Pichia pastoris using the GAP promoter. Acta Genetica Sinica, 2004,31(6):552-557.
doi: 10.1007/BF02873086 pmid: 15490871
[25]   Menéndez C, Martínez D, Trujillo L E , et al. Constitutive high-level expression of a codon-optimized β-fructosidase gene from the hyperthermophile Thermotoga maritima in Pichia pastoris. Applied Microbiology and Biotechnology, 2013,97(3):1201-1212.
doi: 10.1007/s00253-012-4270-2
[26]   钱凯, 张晶晶, 吴素平 , 等. 利用GAP 启动子在毕赤酵母中表达与纯化GLP-1类似物. 中国生物工程杂志, 2015,35(5):66-73.
doi: 10.13523/j.cb.20150510
[26]   Qian K, Zhang J J, Wu S P , et al. Constituted expression and purification of glucagon-like peptide-1 analogue in Pichia pastoris using GAP promoter. China Biotechnology, 2015,35(5):66-73.
doi: 10.13523/j.cb.20150510
[27]   黄鹏, 李文姝, 谢君 , 等. 甲壳素亲和层析在人g2型溶菌酶制备中的应用. 免疫学杂志, 2015,31(5):430-435.
[27]   Huang P, Li W S, Xie J , et al. Application of chitin affinity chromatography in purification of recombinant hLysG2. Immunology Journal, 2015,31(5):430-435.
[28]   Klockars M, Reitamo S . Tissue distribution of lysozyme in man. Journal of Histochemistry & Cytochemistry, 1975,23(12):932-940.
[29]   Mason D Y, Taylor C R . The distribution of muramidase (lysozyme) in human tissues. Journal of Clinical Pathology, 1975,28(2):124-132.
doi: 10.1136/jcp.28.2.124 pmid: 475611
[1] Jian YAN,Lu-qiang JIA,Jian DING,Zhong-ping SHI. Enhancing pIFN-α Production by Pichia pastoris via Periodic Methanol Induction Control[J]. China Biotechnology, 2019, 39(6): 32-40.
[2] ZHANG Wen-yu,WEI Dong-sheng,QIAN Jiang-chao. Effects of Co-expression of PDI1, MDH1 and HAC1 Gene on Secretory Expression of Recombinant Glucose Oxidase in Pichia pastoris[J]. China Biotechnology, 2019, 39(10): 24-33.
[3] Tong WANG,Yan XU,Xiao-wei YU. Homologous Expression and Characterization of Pichia pastoris Kex2[J]. China Biotechnology, 2019, 39(1): 38-45.
[4] Jian-xue TANG,Yong-le XIAO,Jun-jie PENG,Shi-ji ZHAO,Xiao-ping WAN,Rong GAO. Expression of Fusion Antibacterial Peptide in Recombinant Pichia pastoris and Its Bioactivity In Vitro[J]. China Biotechnology, 2018, 38(6): 9-16.
[5] Pan-pan ZHANG,Yan-ji XU,Zhi-ke WANG,Xiao LIU,Su-xia LI. High-level Expression and Characterization of Recombinant Porcine Trypsin and Its R122 Site Mutant in Pichia pastoris[J]. China Biotechnology, 2018, 38(5): 56-65.
[6] HUANG Peng, LI Wen-shu, XIE Jun, BAO Jian-ying, CAO Xiao-e, YU Long, XU Yi-xin . Expression of Human Lysozyme-like Protein 6 in Pichia pastoris and Analysis of Enzymatic Activity of the Protein[J]. China Biotechnology, 2015, 35(8): 30-37.
[7] QIAN Kai, ZHANG Jing-jing, WU Su-ping, CAI Yan-fei, CHEN Yun, JIN Jian. Constituted expression and purification of glucagon-like peptide-1 analogue in Pichia pastoris using GAP promoter[J]. China Biotechnology, 2015, 35(5): 66-73.
[8] LI Xin-xin, TAO Jian-jun, YU Long. Recombinant Human Lysozyme LYZL4:Expression in Pichia pastoris and Its Antibacterial Activity[J]. China Biotechnology, 2014, 34(1): 79-85.
[9] TIAN Lin-Ai, NIU Wei-Ning, ZUO Xiao-Jia, QIN Chuan-Guang. Constitutive Expression,Purification and Identification of S-Adenosylmethionine Synthetase[J]. China Biotechnology, 2010, 30(03): 61-66.
[10] SHU Yan-Fei, YANG Bo. The Constitutive Expression  of CALB in Pcihia pastoris and Purification of Product[J]. China Biotechnology, 2009, 29(10): 55-59.