Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (9): 94-101    DOI: 10.13523/j.cb.20140914
    
Identification of an Alginate Lyase Producing Strain Halomonas sp. WF6 and Fermentation Optimization
LI Heng, ZHU Si-ting, LIU Xu-mei, GONG Jin-song, JIANG Min, XU Zheng-hong, SHI Jin-song
School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China
Download: HTML   PDF(931KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An efficient alginate-degrading strain isolated from rotten seaweed was identified. With the results of morphological properties, physiological characteristics as well as 16S rDNA sequencing, the strain was identified as Halomonas sp. WF6. The fermentation medium component was optimized by both single factor and orthogonal test, which was composed of sodium alginate 6.0 g/L, peptone 5.0 g/L, yeast extract 2.5 g/L, NaCl 30 g/L, K+ 5 mmol/L. This strain was cultivated at 25℃ for 39 h with optimized conditions of initial pH 8.0, inoculum size 2% and liquid volume 30 ml/250 ml, the alginate lyase activity was increased to 117.66 U/ml, which was 2.1-fold compared with the control. The enzymatic hydrolysates of sodium alginate mainly included di- and tri-alginate oligosaccharides.



Key wordsAlginate lyase      Halomonas sp.      Idendification      Optimization     
Received: 03 June 2014      Published: 25 September 2014
ZTFLH:  Q93  
Cite this article:

LI Heng, ZHU Si-ting, LIU Xu-mei, GONG Jin-song, JIANG Min, XU Zheng-hong, SHI Jin-song. Identification of an Alginate Lyase Producing Strain Halomonas sp. WF6 and Fermentation Optimization. China Biotechnology, 2014, 34(9): 94-101.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140914     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I9/94


[1] Fujibara M, Nagumo T. An influence of the structure of alginate on the chemotactic activity of macrophages and the antitumer activity. Carbohydrate Research, 1993, 243 (1) : 211-216.

[2] Wall D, Douglas S, Ferro V, et al. Characterisation of the anticoagulant properties of a range of structurally diverse sulfated oligosaccharides. Thrombosis Research, 2001, 103 (4) : 325-335.

[3] Natsume M, Kamo Y, Hirayama M, et al. Isolation and characterization of alginate derived oligosaccharides with root growth promoting activities. Carbohydrate Research, 1994, 258 : 187-197.

[4] Holme H K, Lindmo K, Kristiansen A, et al. Thermal depolymerization of alginate in the solid state. Carbohydrate Polymers, 2003, 54 (4) : 431-438.

[5] 杨钊,张真庆,管华诗.一种新的褐藻胶寡糖制备方法——氧化降解法. 海洋科学, 2004, 28 (7) : 19-22. Yang Z, Zhang Z Q, Guan H S. Oxidation depolymerization-a new method for preparation of alginate oligosaccharides. Marine Sciences, 2004, 28 (7) : 19-22.

[6] Zhang Z, Yu G, Guan H, et al. Preparation and structure elucidation of alginate oligosaccharides degraded by alginate lyase from Vibro sp. 510. Carbohydrate Research, 2004, 339 (8) : 1475-1481.

[7] Haug A, Myklestad S, Larsen B R, et al. Correlation between chemical structure and physical properties of alginates. Acta Chemica Scandinavica, 1967, 21 (3) : 768-778.

[8] 李丽妍,管华诗,江晓路,等. 海藻工具酶——褐藻胶裂解酶研究进展. 生物工程学报, 2011, 27(6): 838-845. Li L Y, Guan H S, Jiang X L, et al. Advances in algae tool enzymes: alginate lyase. Chinese Journal of Biotechnology, 2011, 27 (6) : 838-845.

[9] Tang J C, Taniguchi H, Chu H, et al. Isolation and characterization of alginate-degrading bacteria for disposal of seaweed wastes. Letters in Applied Microbiology, 2009, 48 (1) : 38-43.

[10] Farrell E K, Tipton PA. Functional characterization of AlgL, an alginate lyase from Pseudomonas aeruginosa. Biochemistry, 2012, 51 (51) : 10259-10266.

[11] Gimmestad M, Ertesvag H, Heggeset T M B, et al. Characterization of three new Azotobacter vinelandii alginate lyases, one of which is involved in cyst germination. Journal of Bacteriology, 2009, 191 (15) : 4845-4853.

[12] Ma L Y, Chi Z M, Li J, et al. Over expression of alginate lyase of Pseudoaltetmonas elyakovii in Escherichia coli, purification, and characterization of the recombinant alginate lyase. World Journal of Microbiollogy and Biotechnology, 2008, 24 (1) : 89-96.

[13] Math R K, Jin H M, Kim J M, et al. Comparative genomics reveals adaptation by Alteromonas sp. SN2 to marine tidal-flat conditions: cold tolerance and aromatic hydrocarbon metabolism. PloS One, 2012, 7(4): e35784.

[14] 魏丹, 窦文芳, 李恒, 等. 高效降解褐藻胶新菌种的筛选, 鉴定及产酶条件优化. 食品与发酵工业, 2012, 38 (7) : 26-31. Wei D, Dou W F, Li H, et al. Isolation, identification, and fermentation optimization of a high efficient novel alginate-degrading strain. Food and Fermentation Industries, 2012, 38 (7) : 26-31.

[15] Weisburg W G,Barns S M,Pelletier D A,et al. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 1991, 173 (2) : 697 -703.

[16] Cello F D, Bevivino A, Chiarini L, et al. Biodiversity of a Burkholderia cepacia Population Isolated from the Maize Rhizosphere at Different Plant Growth Stages. Applied and Environment Microbiology, 1997, 63 (11) : 4485-4493.

[17] Momma K, Okamoto M, Mishima Y, et al. A novel bacterial ATP-binding cassette transporter system that allows uptake of macromolecules. Journal of Bacteriology, 2000, 182 (14) : 3998-4004.

[18] ElAhwany A M D, Elborai A M. Optimization of medium composition for extra cellular alginate lyases of a marine bacterium. African Journal of Microbiology Research, 2012, 6 (10) : 2403-2409.

[19] 侯保兵, 刘书来, 张建友, 等. 褐藻胶裂解酶产生菌的发酵优化研究, 水产科学. 2009, 28 (11) : 667-670. Hou B B, Liu S L, Zhang J Y, et al. Optimization of alginate-degrading bacterial fermentation process for alginate lyase production. Fisheries Science, 2009, 28 (11) : 667-670.

[20] Moo K I. Optimization of culturing condition and medium composition for the production of alginate lyase by a marine Vibrio sp. YKW-34. Journal of Ocean University of China, 2008, 7 (1) : 97-102.

[21] 郭恩文, 王亚,于文功, 等. 产双功能褐藻胶裂解酶菌株的筛选与初步研究, 现代生物医学进展, 2013, 13 (29) : 5606-5609. Guo E W, Wang Y, Yu W G, et al. Screening and characterization of a bifunctional alginate lyase-producing bacterium strain. Progress in Modern Biomedicine, 2013, 13 (29) : 5606-5609.

[22] 王霁宁,严孝强,杜宗军. 一株高效褐藻胶降解菌的筛选及其发酵条件的优化. 中国酿造, 2012, 31 (5) : 7-10. Wang J N, Yan X Q, Du Z J. Screening of alginate degrading bacteria and optimization of fermentation conditions. China Brewing, 2012, 31 (5) : 7-10.

[23] Sim S J, Baik K S, Park S C, et al. Characterization of alginate lyase gene using a metagenomic library constructed from the 434 gut microflora of abalone. Journal of Industrial Microbiology and Biotechnology, 2012, 39 (4) : 585-593.

[1] WANG Xiao-jie,MENG Fan-qiang,ZHOU Li-bang,LV Feng-xia,BIE Xiao-mei,ZHAO Hai-zhen,LU Zhao-xin. Breeding of Brevibacillin Producing Strain by Genome Shuffling and Optimization of Culture Conditions[J]. China Biotechnology, 2021, 41(8): 42-51.
[2] JIANG Ji-zhe, PAN Hang, YUE Min, ZHANG Le. The Study of Worldwide Brucella canis of Phylogenetic Groups by Comparative Genomics-based Approaches[J]. China Biotechnology, 2020, 40(3): 38-47.
[3] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[4] Long-bing YANG,Guo GUO,Hui-ling MA,Yan LI,Xin-yu ZHAO,Pei-pei SU,Yon ZHANG. Optimization of Prokaryotic Expression Conditions and Antifungal Activity Detection of Antibacterial Peptide AMPs17 Protein in Musca domestica[J]. China Biotechnology, 2019, 39(4): 24-31.
[5] Yue WANG,Jiang-hua LI,Guo-cheng DU,Long LIU. Molecular Modification of L-amino Acid Deaminase and Optimization of α-ketoglutaric Acid Production by Whole-cell Biocatalysis[J]. China Biotechnology, 2019, 39(3): 56-64.
[6] REN Li-qiong,WU Jing,CHEN Sheng. Co-Expression of N-Acetyltransferase Enhances the Expression of Aspergillus nidulans α-Glucosidase in Pichia pastoris[J]. China Biotechnology, 2019, 39(10): 75-81.
[7] Hai-jiao JI,Wen-lei LI,Rui-jing Huang,Jian LI,Han-mei XU. Anti-CD20rh MAb Quality Evaluation and Monoclonal Cell Line Screening[J]. China Biotechnology, 2018, 38(8): 34-40.
[8] Ya-li HAN,Guang-heng YANG,Yan-wen CHEN,Xiu-li GONG,Jing-zhi ZHANG. The Optimization of Self-deleting Lentiviral Vector Carrying Human β-globin Gene and Promoter[J]. China Biotechnology, 2018, 38(7): 50-57.
[9] Li ZHANG,Juan DING,Yu-cheng HAO,Cheng YE,Yang PU. Identification of a Marine Microalgae and Optimization of Protoplast Preparation[J]. China Biotechnology, 2018, 38(11): 42-50.
[10] Jing WANG,Xin XU,Xue-yu WANG,Lun-guang YAO,Yun-chao KAN,Jun JI. Research Progress of Loop-Mediated Isothermal Amplification in Food Safety Testing[J]. China Biotechnology, 2018, 38(11): 84-91.
[11] FENG Xue, GAO Xiang, NIU Chun-qing, LIU Yan. Construction of Pichia pastoris Expression Vector of Codon Optimized αB-crystallin Gene and Expression Optimization[J]. China Biotechnology, 2017, 37(7): 42-47.
[12] ZHANG Xu-hui, ZHANG Hong-nan, LI Yong, WANG Wen-qiang. Screening and Identification of Biocontrol Fungi against Didymella bryoniae and Optimization of Fermentation Conditions[J]. China Biotechnology, 2017, 37(5): 76-86.
[13] YAO Ren-hui, DONG Zhuo, LI Hui. Biotransformation of Androst-4-en-3,17-dione by Gibberella intermedia C2[J]. China Biotechnology, 2017, 37(3): 73-77.
[14] LIN You-hong, CHENG Xia-ying, YAN Yi-wen, LIANG Zong-suo, YANG Zong-qi. Expression and Optimization Strategy of Recombinant Proteins in Chlamydomonas Chloroplast[J]. China Biotechnology, 2017, 37(10): 118-125.
[15] KANG Guo-kai, FENG Guo-dong, CAO Kun-lin, CHEN Zheng-jun, GE Xiang-yang. Optimization for High Production Fermentation of Lunasin from Recombinant Pichia pastoris[J]. China Biotechnology, 2016, 36(8): 73-79.