Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (11): 68-74    DOI:
    
Fusion Expression and Purification of Human Beta Defensin-3 in E.coli
ZHU Jun-ping1, LI Gai-rui1, DU Qi-ke3, GUO Zhong-min2, LU Jia-hai1
1. School of Public Health, Sun Yat-sen University, Key Laboratory of Tropical Disease Control(Sun Yat-sen University), Ministry of Education, Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Guangzhou 510080, China;
2. Experiment Animal Center, Sun Yat-sen University, Guangzhou 510080, China;
3. Good Earth Group, Animal Peptide Bio-Engineering Center of Shandong Province, Caoxian 274400, China
Download: HTML   PDF(893KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Antimicrobial peptides (AMPs) which are produced by most living organisms have shown robust activity against a wide variety of pathogens, including drug-resistant bacteria. They are important components of the innate and adaptive system. Human beta-defensin-3 is an endogenous, cysteine-rich antimicrobial peptide that resistants to high salt and contributes more powerful to host defense against multi-resistant bacteria compared with other beta-defensins. There is a great need for a less expensive and increasing efficiency peptide-production platform.This research aims at expressing human beta-defensin-3 and a novel sequence human beta-defensin-3i based on E. coli codon preference in E.coli BLR(DE3) via pET-EI plasmid vector. HβD-3i were 12 times higher yields than HβD-3. All the peptides, expressed as fusion protein, were isolated from the protein debris by the method called Inverse Transition Cycling(ITC).Fully reduced peptides that were purified exhibited expected antimicrobial activity that towarded to Staphylococus aureus was stronger than Salmonella.It is an attractive way to express human beta-defensin-3 via pET-EI prokaryotic plasmid vector. This approach described here is a low-cost, convenient and potential way for large-scale human beta-defensin-3 production.

Key wordsHβD-3      HβD-3i      pET-EI expression vector     
Received: 09 May 2013      Published: 25 November 2013
ZTFLH:  Q812  
Cite this article:

ZHU Jun-ping, LI Gai-rui, DU Qi-ke, GUO Zhong-min, LU Jia-hai. Fusion Expression and Purification of Human Beta Defensin-3 in E.coli. China Biotechnology, 2013, 33(11): 68-74.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I11/68

[1] Nakatsuji T, Gallo R L. Antimicrobial peptides: old molecules with new ideas. J Invest Dermatol, 2012, 132(3 Pt 2):887-895.
[2] Harder J, Bartels J, Christophers E, et al. Isolation and characterization of human beta -defensin-3, a novel human inducible peptide antibiotic. J Biol Chem, 2001, 276(8):5707-5713.
[3] Wu W Y, Mee C, Califano F, et al. Recombinant protein purification by self-cleaving aggregation tag. Nat Protoc, 2006, 1(5):2257-2262.
[4] 陈德福. 现代分子生物学实验原理与技术. 北京:科学出版社, 2006.30-105. Chen D F.Modern Principles and Techniques of Molecular Biology Experiments.Beijing: Science Press, 2006.30-105.
[5] Cregg J M. Recent advances in the expression of foreign genes in Pichiapastoris. Bio P T echnology, 2003:905-910.
[6] Goloubinoff P, Gatenby A A, Lorimer G H. GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature, 1989, 337(6202):44-47.
[7] 幕天阳. 利用可裂解聚集标签表达纯化基质金属蛋白酶MMP-26催化结构域. 长春:吉林大学, 2009. Mu TY.Expression and purification of cdMMP-26 fused with self-cleaving aggregation tag. College of Life Science, Jilin University, 2009.
[8] 陈爱春, 彭伟, 汪生鹏. 亲和标签在重组蛋白表达与纯化中的应用. 中国生物工程杂志, 2012(12):93-103. Chen AC, PengW, Wang S P.Progress in the Application Tags for the Expression and Purification of Recombinant Protein. China Biotechnology, 2012(12):93-103.
[9] Schroeder B O, Wu Z, Nuding S, et al. Reduction of disulphide bonds unmasks potent antimicrobial activity of human beta-defensin 1. Nature, 2011, 469(7330):419-423.
[10] Sass V, Schneider T, Wilmes M, et al. Human beta-defensin 3 inhibits cell wall biosynthesis in Staphylococci. Infect Immun, 2010, 78(6):2793-2800.
[11] Ulm H, Wilmes M, Shai Y, et al. Antimicrobial host defensins-specific antibiotic activities and innate defense modulation. Front Immunol, 2012, 3:249.
[12] Hicks R P, Bhonsle J B, Venugopal D, et al. De novo design of selective antibiotic peptides by incorporation of unnatural amino acids. J Med Chem, 2007, 50(13):3026-3036.
[1] YANG Xi,LUAN Yu-shi. Preliminary Study of Sly-miR399 in Tomato Resistance to Late Blight[J]. China Biotechnology, 2021, 41(11): 23-31.
[2] BU Kai-xuan,ZHOU Cui-xia,LU Fu-ping,ZHU Chuan-he. Research on the Regulation Mechanism of Bacterial Transcription Initiation[J]. China Biotechnology, 2021, 41(11): 89-99.
[3] HE Li-heng,ZHANG Yi,ZHANG Jie,REN Yu-chao,XIE Hong-e,TANG Rui-min,JIA Xiao-yun,WU Zong-xin. Construction of Gene Co-expression Network and Identification of Hub Genes Related to Anthocyanin Biosynthesis Based on RNA-seq and WGCNA in Sweetpotato[J]. China Biotechnology, 2021, 41(9): 27-36.
[4] CHEN Ya-chao,LI Nan-nan,LIU Zi-di,HU Bing,LI Chun. Metagenomic Mining of Functional Genes Related to Glycyrrhizin Synthesis from Endophytes of Licorice[J]. China Biotechnology, 2021, 41(9): 37-47.
[5] LI Xiao-jin,LI Yan-meng,LI Zhen-kun,XU An-jian,YANG Xiao-xi,HUANG Jian. The Mechanism of Copper Accumulation Induced Autophagy in Hepatocytes of ATP7B-deficient Mice Based on RNA-sequencing[J]. China Biotechnology, 2021, 41(9): 10-19.
[6] WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish[J]. China Biotechnology, 2021, 41(9): 20-26.
[7] XU Wen-juan,SONG Dan,CHEN Dan,LONG Hui,CHEN Yu-bao,LONG Feng. Research Progress of Pathogen Detection Technologies Based on CRISPR/CAS Biosensor[J]. China Biotechnology, 2021, 41(8): 67-74.
[8] ZHAO Xiao-yu,XU Qi-ling,ZHAO Xiao-dong,AN Yun-fei. Enhancing Lentiviral Vector Transduction Efficiency for Facilitating Gene Therapy[J]. China Biotechnology, 2021, 41(8): 52-58.
[9] ZHAO Xia,ZHU Zhe,ZU Yao. tbx2b Affects Atrioventricular Canal Development in Zebrafish[J]. China Biotechnology, 2021, 41(8): 1-7.
[10] LIANG Jin-gang,ZHANG Xu-dong,BI Yan-zhe,WANG Hao-qian,ZHANG Xiu-jie. Development Status and Prospect of Genetically Modified Insect-resistant Maize[J]. China Biotechnology, 2021, 41(6): 98-104.
[11] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[12] HUANG Lei,WAN Chang-qing,LIU Mei-qin,ZHAO Min,ZHENG Yan-peng,PENG Xiang-lei,YU Jie-mei,FU Yuan-hui,HE Jin-sheng. Construction of Recombinant Adenovirus Vectors Using the DNA Assembly Method[J]. China Biotechnology, 2021, 41(6): 23-26.
[13] TANG Meng-tong,WANG Zhao-guan,LI Jiao-jiao,QI Hao. Application of Terminal Deoxynucleotidyl Transferase in Biosensors and Nucleic Acid Synthesis[J]. China Biotechnology, 2021, 41(5): 51-64.
[14] HU Xuan,WANG Song,YU Xue-ling,ZHANG Xiao-peng. Construction of a Destabilized EGFP Cell Model for Gene Editing Evaluation[J]. China Biotechnology, 2021, 41(5): 17-26.
[15] WANG Yan-mei,KOU Hang,MA Mei,SHEN Yu-yu,ZHAO Bao-ding,LU Fu-ping,LI Ming. CRISPR/Cas9-mediated Inactivation of the Pectinase Gene in Aspergillus niger and Evaluation of the Mutant Strain[J]. China Biotechnology, 2021, 41(5): 35-44.