Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (8): 1-7    DOI: 10.13523/j.cb.2103060
    
tbx2b Affects Atrioventricular Canal Development in Zebrafish
ZHAO Xia1,2,3,ZHU Zhe1,2,3,ZU Yao1,2,3,**()
1 International Research Center for Marine Biosciences, Ministry of Science and Technology, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
2 Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
3 National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
Download: HTML   PDF(1935KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

tbx2 plays an important role in heart development. To further investigate the gene function in the atrioventricular canal (AVC) development, tbx2b-/- mutation zebrafish was successfully established using the CRISPR/ Cas9 mediated gene knockout technique. The knockout efficiency of F0 was detected by T7E1 assay, and the result showed that the average knockout efficiency was about 57.5%. Sanger sequencing confirmed that tbx2b F1 mutant had a-11bp-base deletion and caused frameshift mutation. Homozygous mutations were lethal in 5 dpf and early embryos suffered from cardiac looping abnormalities. In situ hybridization in 3 dpf tbx2b-/- showed ectopic expression of nppa and nppb, which are chamber-specific marker genes, and significantly decreased expression of has2, which is AVC marker gene. tbx2b -/- mutant was efficiently constructed and effects on downstream genes were discussed, which laid a foundation for further research on the effect of cardiac AVC development and understanding of early cardiac regulatory networks.



Key wordstbx2b      Heart development      Atrioventricular canal      CRISPR     
Received: 23 March 2021      Published: 31 August 2021
ZTFLH:  Q812  
Corresponding Authors: Yao ZU     E-mail: yzu@shou.edu.cn
Cite this article:

ZHAO Xia,ZHU Zhe,ZU Yao. tbx2b Affects Atrioventricular Canal Development in Zebrafish. China Biotechnology, 2021, 41(8): 1-7.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2103060     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I8/1

斑马鱼tbx2b检测引物(5'-3')
F: GCCTTTTCGCGATACGCATT
R: TCCTTCGCTTCCAGTGTGAC
Table 1 Primers of tbx2b
探针名称 原位杂交探针引物序列(5'-3')
tbx2b F GCTGGGCTCCATCCGGCTTT
tbx2b R GCTCTGGTGCAGGACTGCTGG
nppa F GAGACACTCAGAGATGGCCG
nppa R AGGGTGCTGGAAGACCCTAT
nppb F TTCCCGCTTCAAAGCACAGCCT
nppb R CCTGAGCGCCCGACTGTGT
has2 F GGCCCTATGCATCGCAGCCT
has2 R CGCGCGGTGTATTTCGTGGC
Table 2 Sequences of ISH probe primers
Fig.1 The evolution of tbx2b
Fig.2 CRISPR/ Cas9-mediated tbx2b gene knock out (a)CRISPR/ Cas9 knockout diagram and target location (b)Detection of F0 knockout efficiency with T7E1 (c)F1 sequencing results and mutation sites
Fig.3 Amino acids sequence and protein structure of Tbx2b mutation
Fig.4 Phenotypes of tbx2b homozygous mutant and ISH of tbx2b (a)The lateral view of WT and tbx2b-/- under bright field at 3 dpf (b)The phenotypes of WT and tbx2b-/- imaged with cmlc2EGFP at 3 dpf (c)tbx2b expression pattern in WT and tbx2b-/- at 3 dpf
Fig.5 In situ hybridization of nppa, nppb and has2
[1]   Hoffman J I E, Kaplan S. The incidence of congenital heart disease. Journal of the American College of Cardiology, 2002, 39(12):1890-1900.
pmid: 12084585
[2]   Liu Y J, Chen S, Zühlke L, et al. Global birth prevalence of congenital heart defects 1970-2017: updated systematic review and meta-analysis of 260 studies. International Journal of Epidemiology, 2019, 48(2):455-463.
doi: 10.1093/ije/dyz009
[3]   Pang S C, Liu Y M, Zhao Z Q, et al. Novel and functional sequence variants within the TBX2 gene promoter in ventricular septal defects. Biochimie, 2013, 95(9):1807-1809.
doi: 10.1016/j.biochi.2013.05.007
[4]   Liu N, Schoch K, Luo X, et al. Functional variants in TBX2 are associated with a syndromic cardiovascular and skeletal developmental disorder. Human Molecular Genetics, 2018, 27(14):2454-2465.
doi: 10.1093/hmg/ddy146
[5]   Verhoeven M C, Haase C, Christoffels V M, et al. Wnt signaling regulates atrioventricular canal formation upstream of BMP and Tbx2. Birth Defects Research Part A: Clinical and Molecular Teratology, 2011, 91(6):435-440.
doi: 10.1002/bdra.20804
[6]   Bakkers J. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovascular Research, 2011, 91(2):279-288.
doi: 10.1093/cvr/cvr098 pmid: 21602174
[7]   Gut P, Reischauer S, Stainier D Y R, et al. Little fish, big data: zebrafish as a model for cardiovascular and metabolic disease. Physiological Reviews, 2017, 97(3):889-938.
doi: 10.1152/physrev.00038.2016
[8]   Liu J D, Stainier D Y R. Zebrafish in the study of early cardiac development. Circulation Research, 2012, 110(6):870-874.
doi: 10.1161/CIRCRESAHA.111.246504
[9]   Mosimann C, Panáková D, Werdich A A, et al. Chamber identity programs drive early functional partitioning of the heart. Nature Communications, 2015, 6(1):1-10.
[10]   Olson E N. Gene regulatory networks in the evolution and development of the heart. Science, 2006, 313(5795):1922-1927.
pmid: 17008524
[11]   Clowes C, Boylan M G S, Ridge L A, et al. The functional diversity of essential genes required for mammalian cardiac development. Genesis, 2014, 52(8):713-737.
doi: 10.1002/dvg.v52.8
[12]   Harrelson Z, Kelly R G, Goldin S N, et al. Tbx2 is essential for patterning the atrioventricular canal and for morphogenesis of the outflow tract during heart development. Development, 2004, 131(20):5041-5052.
pmid: 15459098
[13]   Shirai M, Imanaka-Yoshida K, Schneider M D, et al. T-box 2, a mediator of Bmp-Smad signaling, induced hyaluronan synthase 2 and Tgf 2 expression and endocardial cushion formation. PNAS, 2009, 106(44):18604-18609.
doi: 10.1073/pnas.0900635106
[14]   Christoffels V M, Hoogaars W M H, Tessari A, et al. T-box transcription factor Tbx2 represses differentiation and formation of the cardiac chambers. Developmental Dynamics, 2004, 229(4):763-770.
pmid: 15042700
[15]   Camenisch T D, Spicer A P, Brehm-Gibson T, et al. Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. The Journal of Clinical Investigation, 2000, 106(3):349-360.
doi: 10.1172/JCI10272
[16]   Singh R, Hoogaars W M, Barnett P, et al. Tbx2 and Tbx3 induce atrioventricular myocardial development and endocardial cushion formation. Cellular and Molecular Life Sciences, 2012, 69(8):1377-1389.
doi: 10.1007/s00018-011-0884-2
[17]   Habets P E M h. Cooperative action of Tbx2 and Nkx2.5 inhibits ANF expression in the atrioventricular canal: implications for cardiac chamber formation. Genes & Development, 2002, 16(10):1234-1246.
doi: 10.1101/gad.222902
[18]   Chapman DL, Garvey N, Hancock S, et al. Expression of the T-box family genes, Tbx1-Tbx5, during early mouse development. Developmental Dynamics, 2010, 206(4):379-390.
doi: 10.1002/(ISSN)1097-0177
[19]   Ribeiro I, Kawakami Y, Büscher D, et al. Tbx2 and Tbx3 regulate the dynamics of cell proliferation during heart remodeling. PLoS One, 2007, 2(4):e398. DOI: 10.1371/journal.pone.0000398.
doi: 10.1371/journal.pone.0000398
[20]   Ma L J, Lu M F, Schwartz R J, et al. Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development, 2005, 132(24):5601-5611.
doi: 10.1242/dev.02156
[21]   Yamada M, Revelli J P, Eichele G, et al. Expression of chick tbx-2, tbx-3, and tbx-5 genes during early heart development: evidence for BMP2 induction of Tbx2. Developmental Biology, 2000, 228(1):95-105.
pmid: 11087629
[22]   Just S, Hirth S, Berger I M, et al. The mediator complex subunit Med10 regulates heart valve formation in zebrafish by controlling Tbx2b-mediated Has2 expression and cardiac jelly formation. Biochemical and Biophysical Research Communications, 2016, 477(4):581-588.
doi: 10.1016/j.bbrc.2016.06.088
[23]   Man J, Barnett P, Christoffels V M. Structure and function of the Nppa-Nppb cluster locus during heart development and disease. Cellular and Molecular Life Sciences, 2018, 75(8):1435-1444.
doi: 10.1007/s00018-017-2737-0
[24]   Lagendijk A K, de Angelis J E, et al. Nppa and Nppb act redundantly during zebrafish cardiac development to confine AVC marker expression and reduce cardiac jelly volume. Development, 2018, 145(12). DOI: 10.1242/dev.160739.
doi: 10.1242/dev.160739
[1] YANG Xi,LUAN Yu-shi. Preliminary Study of Sly-miR399 in Tomato Resistance to Late Blight[J]. China Biotechnology, 2021, 41(11): 23-31.
[2] BU Kai-xuan,ZHOU Cui-xia,LU Fu-ping,ZHU Chuan-he. Research on the Regulation Mechanism of Bacterial Transcription Initiation[J]. China Biotechnology, 2021, 41(11): 89-99.
[3] CHEN Ya-chao,LI Nan-nan,LIU Zi-di,HU Bing,LI Chun. Metagenomic Mining of Functional Genes Related to Glycyrrhizin Synthesis from Endophytes of Licorice[J]. China Biotechnology, 2021, 41(9): 37-47.
[4] HE Li-heng,ZHANG Yi,ZHANG Jie,REN Yu-chao,XIE Hong-e,TANG Rui-min,JIA Xiao-yun,WU Zong-xin. Construction of Gene Co-expression Network and Identification of Hub Genes Related to Anthocyanin Biosynthesis Based on RNA-seq and WGCNA in Sweetpotato[J]. China Biotechnology, 2021, 41(9): 27-36.
[5] LI Xiao-jin,LI Yan-meng,LI Zhen-kun,XU An-jian,YANG Xiao-xi,HUANG Jian. The Mechanism of Copper Accumulation Induced Autophagy in Hepatocytes of ATP7B-deficient Mice Based on RNA-sequencing[J]. China Biotechnology, 2021, 41(9): 10-19.
[6] WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish[J]. China Biotechnology, 2021, 41(9): 20-26.
[7] XU Wen-juan,SONG Dan,CHEN Dan,LONG Hui,CHEN Yu-bao,LONG Feng. Research Progress of Pathogen Detection Technologies Based on CRISPR/CAS Biosensor[J]. China Biotechnology, 2021, 41(8): 67-74.
[8] ZHAO Xiao-yu,XU Qi-ling,ZHAO Xiao-dong,AN Yun-fei. Enhancing Lentiviral Vector Transduction Efficiency for Facilitating Gene Therapy[J]. China Biotechnology, 2021, 41(8): 52-58.
[9] LIANG Jin-gang,ZHANG Xu-dong,BI Yan-zhe,WANG Hao-qian,ZHANG Xiu-jie. Development Status and Prospect of Genetically Modified Insect-resistant Maize[J]. China Biotechnology, 2021, 41(6): 98-104.
[10] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[11] HUANG Lei,WAN Chang-qing,LIU Mei-qin,ZHAO Min,ZHENG Yan-peng,PENG Xiang-lei,YU Jie-mei,FU Yuan-hui,HE Jin-sheng. Construction of Recombinant Adenovirus Vectors Using the DNA Assembly Method[J]. China Biotechnology, 2021, 41(6): 23-26.
[12] HU Xuan,WANG Song,YU Xue-ling,ZHANG Xiao-peng. Construction of a Destabilized EGFP Cell Model for Gene Editing Evaluation[J]. China Biotechnology, 2021, 41(5): 17-26.
[13] WANG Yan-mei,KOU Hang,MA Mei,SHEN Yu-yu,ZHAO Bao-ding,LU Fu-ping,LI Ming. CRISPR/Cas9-mediated Inactivation of the Pectinase Gene in Aspergillus niger and Evaluation of the Mutant Strain[J]. China Biotechnology, 2021, 41(5): 35-44.
[14] TANG Meng-tong,WANG Zhao-guan,LI Jiao-jiao,QI Hao. Application of Terminal Deoxynucleotidyl Transferase in Biosensors and Nucleic Acid Synthesis[J]. China Biotechnology, 2021, 41(5): 51-64.
[15] LIU Mei-qin,GAO Bo,JIAO Yue-ying,LI Wei,YU Jie-mei,PENG Xiang-lei,ZHENG Yan-peng,FU Yuan-hui,HE Jin-sheng. Long Non-coding RNA Expression Profile in A549 Cells Infected with Human Respiratory Syncytial Virus[J]. China Biotechnology, 2021, 41(2/3): 7-13.