Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (6): 23-26    DOI: 10.13523/j.cb.2102031
    
Construction of Recombinant Adenovirus Vectors Using the DNA Assembly Method
HUANG Lei,WAN Chang-qing,LIU Mei-qin,ZHAO Min,ZHENG Yan-peng,PENG Xiang-lei,YU Jie-mei,FU Yuan-hui(),HE Jin-sheng()
College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing 100044, China
Download: HTML   PDF(961KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To establish a recombinant adenovirus vector construction method based on the DNA Assembly method. Methods: First, by designing suitable restriction sites and homology arms, the backbone plasmid pChAd63 of Chimpanzee adenovirus serotype 63 (ChAd63) was obtained using traditional restriction endonuclease ligation methods and the DNA Assembly method. Subsequently, the shuttle plasmid pShuttle63/EGFP carrying the EGFP gene was digested with Sca I, and pChAd63 was digested with Hpa I. The recombinant adenovirus vector pChAd63/EGFP was obtained by the DNA Assembly method. Finally, the recombinant adenovirus rChAd63/EGFP was rescued in 293 cells. Results: The recombinant adenovirus pChAd63/EGFP was successfully constructed by the DNA Assembly method, and the recombinant adenovirus rChAd63/EGFP was rescued. Conclusion: The DNA Assembly method can be widely used in the construction of recombinant adenovirus vectors, and is beneficial to improveing the construction efficiency of recombinant adenovirus vectors.



Key wordsRecombinant adenovirus vector      DNA Assembly     
Received: 24 February 2021      Published: 06 July 2021
ZTFLH:  Q812  
Corresponding Authors: Yuan-hui FU,Jin-sheng HE     E-mail: yhfu@bjtu.edu.cn;jshhe@bjtu.edu.cn
Cite this article:

HUANG Lei,WAN Chang-qing,LIU Mei-qin,ZHAO Min,ZHENG Yan-peng,PENG Xiang-lei,YU Jie-mei,FU Yuan-hui,HE Jin-sheng. Construction of Recombinant Adenovirus Vectors Using the DNA Assembly Method. China Biotechnology, 2021, 41(6): 23-26.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2102031     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I6/23

Fig.1 pShuttle63 identified by restriction endonuclease analysis M: DL 15000 Marker; pShuttle63 digested byPac I and Pme I, respectively
Fig.2 pShuttle63/EGFP identified by restriction endonuclease analysis M: DL 15000 Marker; pShuttle63/EGFP digested by Kpn Ⅰ and Sal
Fig. 3 pChAd63 identified by restriction endonuclease analysis M: DL 15000 Marker; pChAd63 digested by Nde Ⅰ and Avr ⅠI, 1, Xba I and Spe Ⅰ, 2, EcoRV, 3, respectively
Fig.4 pChAd63/EGFP identified by restriction endonuclease analysis M: DL 15000 Marker; pChAd63 digested by MluⅠ andEcoRⅠ, 1,NheⅠ, 2,NdeⅠ, 3, respectively
Fig. 5 EGFP expression after pChAd63/EGFP transfection of 293 cells
Fig.6 Transfection of pChAd63/EGFP into 293 cells and passage of recombinant adenovirus in 293 cells
[1]   Fougeroux C, Holst P J. Future prospects for the development of cost-effective adenovirus vaccines. International Journal of Molecular Sciences, 2017, 18(4):686.
doi: 10.3390/ijms18040686
[2]   Mizuguchi H, Kay M A, Hayakawa T. Approaches for generating recombinant adenovirus vectors. Advanced Drug Delivery Reviews, 2001, 52(3):165-176.
doi: 10.1016/S0169-409X(01)00215-0
[3]   Yang Y, Chi Y D, Tang X Y, et al. Rapid, efficient, and modular generation of adenoviral vectors via isothermal assembly. Current Protocols in Molecular Biology, 2016, 113(1). DOI: 10.1002/0471142727.mb1626s113.
[4]   Gibson D G, Smith H O, Hutchison C A, et al. Chemical synthesis of the mouse mitochondrial genome. Nature Methods, 2010, 7(11):901-903.
doi: 10.1038/nmeth.1515
[5]   Abbink P, Kirilova M, Boyd M, et al. Rapid cloning of novel rhesus adenoviral vaccine vectors. Journal of Virology, 2018, 92(6):e01924-e01917.
[6]   Guo J G, Mondal M, Zhou D M. Development of novel vaccine vectors: Chimpanzee adenoviral vectors. Human Vaccines & Immunotherapeutics, 2018, 14(7):1679-1685.
[1] YANG Xi,LUAN Yu-shi. Preliminary Study of Sly-miR399 in Tomato Resistance to Late Blight[J]. China Biotechnology, 2021, 41(11): 23-31.
[2] BU Kai-xuan,ZHOU Cui-xia,LU Fu-ping,ZHU Chuan-he. Research on the Regulation Mechanism of Bacterial Transcription Initiation[J]. China Biotechnology, 2021, 41(11): 89-99.
[3] LI Xiao-jin,LI Yan-meng,LI Zhen-kun,XU An-jian,YANG Xiao-xi,HUANG Jian. The Mechanism of Copper Accumulation Induced Autophagy in Hepatocytes of ATP7B-deficient Mice Based on RNA-sequencing[J]. China Biotechnology, 2021, 41(9): 10-19.
[4] WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish[J]. China Biotechnology, 2021, 41(9): 20-26.
[5] CHEN Ya-chao,LI Nan-nan,LIU Zi-di,HU Bing,LI Chun. Metagenomic Mining of Functional Genes Related to Glycyrrhizin Synthesis from Endophytes of Licorice[J]. China Biotechnology, 2021, 41(9): 37-47.
[6] HE Li-heng,ZHANG Yi,ZHANG Jie,REN Yu-chao,XIE Hong-e,TANG Rui-min,JIA Xiao-yun,WU Zong-xin. Construction of Gene Co-expression Network and Identification of Hub Genes Related to Anthocyanin Biosynthesis Based on RNA-seq and WGCNA in Sweetpotato[J]. China Biotechnology, 2021, 41(9): 27-36.
[7] XU Wen-juan,SONG Dan,CHEN Dan,LONG Hui,CHEN Yu-bao,LONG Feng. Research Progress of Pathogen Detection Technologies Based on CRISPR/CAS Biosensor[J]. China Biotechnology, 2021, 41(8): 67-74.
[8] ZHAO Xiao-yu,XU Qi-ling,ZHAO Xiao-dong,AN Yun-fei. Enhancing Lentiviral Vector Transduction Efficiency for Facilitating Gene Therapy[J]. China Biotechnology, 2021, 41(8): 52-58.
[9] ZHAO Xia,ZHU Zhe,ZU Yao. tbx2b Affects Atrioventricular Canal Development in Zebrafish[J]. China Biotechnology, 2021, 41(8): 1-7.
[10] LIANG Jin-gang,ZHANG Xu-dong,BI Yan-zhe,WANG Hao-qian,ZHANG Xiu-jie. Development Status and Prospect of Genetically Modified Insect-resistant Maize[J]. China Biotechnology, 2021, 41(6): 98-104.
[11] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[12] HU Xuan,WANG Song,YU Xue-ling,ZHANG Xiao-peng. Construction of a Destabilized EGFP Cell Model for Gene Editing Evaluation[J]. China Biotechnology, 2021, 41(5): 17-26.
[13] WANG Yan-mei,KOU Hang,MA Mei,SHEN Yu-yu,ZHAO Bao-ding,LU Fu-ping,LI Ming. CRISPR/Cas9-mediated Inactivation of the Pectinase Gene in Aspergillus niger and Evaluation of the Mutant Strain[J]. China Biotechnology, 2021, 41(5): 35-44.
[14] TANG Meng-tong,WANG Zhao-guan,LI Jiao-jiao,QI Hao. Application of Terminal Deoxynucleotidyl Transferase in Biosensors and Nucleic Acid Synthesis[J]. China Biotechnology, 2021, 41(5): 51-64.
[15] LIU Mei-qin,GAO Bo,JIAO Yue-ying,LI Wei,YU Jie-mei,PENG Xiang-lei,ZHENG Yan-peng,FU Yuan-hui,HE Jin-sheng. Long Non-coding RNA Expression Profile in A549 Cells Infected with Human Respiratory Syncytial Virus[J]. China Biotechnology, 2021, 41(2/3): 7-13.