Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (9): 42-49    DOI: 10.13523/j.cb.20150907
    
Effects of Signal Peptides's Optimization on the Secretion of Lipase S in Bacillus subtilis
ZHOU Yong, XU Gang, YANG Li-rong, WU Jian-ping
Zhejiang University, Department of Chemical and Biological Engineering, Hangzhou 310027, China
Download: HTML   PDF(668KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Due to its safety and excellent exocrine capacity, Bacillus subtilis is used as the heterologous expression system of lipase currently. How to improve the secretion level of lipase in Bacillus subtilis has become a research hotspot. The expression of LipS in Bacillus subtilis has the problems that the signal peptide of LipS can't secrete itself well and the expression level of LipS isn't very high. To solve these problems, the screening of different signal peptides with different structure in Sec pathway and Tat pathway maybe a good method. The results show the signal peptide phoD can secrete the LipS more well than the other signal peptides. Then the strategies such as changing the expression system with an inducible expression system is took, optimizing the signal peptide phoD and expression conditions, the secretion level of LipS increased significantly. The secreted lipase activity reached 62.07U/L, accounting for 62.30% of the total lipase activity. Compared with the extracellular activity of the original system, the new system increased about 13.7 times.



Key wordsLipase      Signal Peptides      Screening      Secretion     
Received: 22 April 2015      Published: 25 September 2015
ZTFLH:  Q814  
Cite this article:

ZHOU Yong, XU Gang, YANG Li-rong, WU Jian-ping. Effects of Signal Peptides's Optimization on the Secretion of Lipase S in Bacillus subtilis. China Biotechnology, 2015, 35(9): 42-49.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20150907     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I9/42


[1] 贾建波, 李相前, 胡敏. 脂肪酶基因在枯草芽孢杆菌中的表达及表达产物性质的研究. 中国生物工程杂志,2008, 28(1): 25-29. Jia J B, Li X Q, Hu M. Expression and characterization of a lipase in Bacillus subtilis. China Biotechnology,2008, 28(1): 25-29.

[2] Yang M M, Zhang W W, Zhang X F, et al. Construction and characterization of a novel maltose inducible expression vector in Bacillus subtilis. Biotechnol Lett, 2006, 28(21): 1713-1718.

[3] 彭清忠, 张惟材, 朱厚础. 枯草杆菌表达系统的研究进展.生物技术通讯, 2001, 12(3): 220-225. Peng Q Z, Zhang W C, Zhu H C. Progress in the expressing system of Bacillus subtilis. Letters in Biotechnology, 2001, 12(3): 220-225.

[4] Westers H, Braun PG, Westers L, et al. Genes involved in SkfA killing factor production protect a Bacillus subtilis lipase against proteolysis. Appl Environ Microbiol, 2005, 71(4):1899-1908.

[5] 胡艳华, 李敏, 石爱琴. 胞外脂肪酶在枯草芽孢杆菌中的表达与其性质. 浙江理工大学学报, 2009, 26(5):757-763. Hu Y H, Li M, Shi A Q. Expression and analysis of an extracellular lipase in Bacillus subtilis. Journal of Zhejiang Sci-Tech University 2009, 26(5):757-763.

[6] 何敏, 脂肪酶产生菌的筛选及其酶基因在枯草芽孢杆菌中的整合表达. 四川:四川农业大学, 动物医学院,2011. He M. Screening of Lipase Producing Strains and the Integrative Expression of Lipase Genes in Bacillus subtilis. Sichuan: Sichuan Agricultural University, College of Veterinary Medicine,2011.

[7] Olusesan A T, Azura L K, Abubakar F, et al. Enhancement of thermostable lipase production by a genotypically identified extremophilic Bacillus subtilis NS 8 in a continuous bioreactor. J Mol Microbiol Biotechnol. 2011, 20(2): 105-115.

[8] 沈兴中. 枯草芽孢杆菌lipA基因启动子的修饰及其表达. 天津:天津大学, 化工学院,2008. Shen X Z. Modification and Expression of lipA Promoter in Bacillus subtilis. Tianjin: Tianjin University, College of Chemical Engineering,2008.

[9] Lu Y P, Lin Q, Wang J, et al. Overexpression and characterization in Bacillus subtilis of a positionally nonspecific lipase from Proteus vulgaris. J Ind Microbiol Biotechnol, 2010, 37(9): 919-925.

[10] 夏雨, 成玉梁, 李达倩,等. 枯草芽孢杆菌分泌载体构建及其对脂肪酶A的分泌表达. 安徽农业科学, 2011, 39(30): 18435-18437. Xia Y, Cheng Y L, Li D Q, et al. Construction of secretory expression vectors for Bacillus subtilis and secretion of lipase A, Journal of Anhui Agri. Sci, 2011, 39(30): 18435-18437.

[11] 崔静, 王光强, 陈海琴,等. 利用非经典分泌蛋白质实现脂肪酶 A 的分泌表达. 微生物学报, 2015, 55(2): 198-204. Cui J, Wang G Q, Chen H Q, et al. Effect of non-classical secreted proteins on LipaseA secretion. Acta Microbiologica Sinica, 2015, 55(2): 198-204.

[12] Sambrook J, Russell D W. Molecular Cloning: A Laboratory Manual. 3rd ed. New York: Cold Spring Harbor Laboratory Press, 2001.

[13] Spizizen J. Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc Natl Acad Sci, 1958 44(10):1072-1078.

[14] 李牧. 嗜麦芽糖寡养单胞菌脂肪酶的筛选、异源表达及在催化制备l-薄荷醇中的应用. 杭州: 浙江大学, 化学工程与生物工程学院,2012. Li M. Screening and Heterologous Expression of Stenotrophomonas maltophilia Lipase, and Its Application in Enzymatic Preparation of l-menthol. Hangzhou: Zhejiang University, College of Chemical and Biological Engineering,2012.

[15] Brockmeier U, Caspers M, Freud R, et al. Systematic screening of all signal peptides from Bacillus subtilis: A powerful strategy in optimizing heterologous protein secretion in Gram-positive Bacteria. J Mol Biol, 2006, 362(3): 393-402.

[16] Tjalsma H, Bolhuis H, Jongbloed J D, et al. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev, 2000, 64(3): 515-547.

[17] Robinson C, Bolhuis A. Protein targeting by the twin-arginine translocation pathway. Nature Reviews Molecular Cell Biology, 2001, 2(5): 350-356.

[18] Sarvas, M, Harwood C R, Bron S, et al. Post-translocational folding of secretory proteins in Gram-positive bacteria. Biochimica et Biophysica Acta, 2004, 1694(1-3): 311-327.

[19] Jung J, Yu K O, Ramzi A B, et al. Improvement of surfactin production in Bacillus subtilis using synthetic wastewater by overexpression of specific extracellular signaling peptides, comX and phrC. Biotechnology and Bioengineering, 2012, 109(9): 2349-2356.

[20] Luan C, Zhang H W, Song D G, et al. Expressing antimicrobial peptide cathelicidin-BF in Bacillus subtilis using SUMO technology. Appl Microbiol Biotechnol, 2014, 98(8): 3651-3658.

[21] Phan T T P, Schumann W. Development of a glycine-inducible expression system for Bacillus subtilis. Journal of Biotechnology, 2007, 128(3): 486-499.

[22] Wu J P, Li M, Zhou Y, et al. Introducing a salt bridge into the lipase of Stenotrophomonas maltophilia results in a very large increase in thermal stability. Biotechnol Lett, 2015, 37(2): 403-407.

[23] Pop O I, Westermann M, Volkmer-Engert R, et al. Sequence- specific binding of prePhoD to soluble TatAd indicates protein-mediated targeting of the Tat export in Bacillus subtilis. The Journal of Biological Chemistry, 2003, 278(40): 38428-38436.

[24] Klein M J, Grage S L, Muhle-Goll C, et al. Structure analysis of the membrane-bound PhoD signal peptide of the Tat translocase shows an N-terminal amphiphilic helix. Biochimica et Biophysica Acta, 2012, 1818(12): 3025-3031.

[25] Wu B, He M X, Feng H, et al. Construction of a novel secretion expression system guided by native signal peptide of PhoD in Zymomonas mobilis. Bioscience Biotechnology and Biochemistry, 2014, 78(4): 708-713.

[1] GUO Fang,ZHANG Liang,FENG Xu-dong,LI Chun. Plant-derived UDP-glycosyltransferase and Its Molecular Modification[J]. China Biotechnology, 2021, 41(9): 78-91.
[2] QIAN Yu,DING Xiao-yu,LIU Zhi-qiang,YUAN Zeng-qiang. An Efficient Monoclonal Establishment Method of Genetically Modified Human Pluripotent Stem Cells[J]. China Biotechnology, 2021, 41(8): 33-41.
[3] HE Ruo-yu,LIN Fu-yu,GAO Xiang-dong,LIU Jin-yi. Research and Application Progress of Signal Peptides in Escherichia coli Secretion Systems[J]. China Biotechnology, 2021, 41(5): 87-93.
[4] ZHANG Hu,LIU Zhen-zhou,CHEN Jia-min,GAO Bao-yan,ZHANG Cheng-wu. Research Progress on the Production of Bioactive Compounds from Marine Diatoms[J]. China Biotechnology, 2021, 41(4): 81-90.
[5] LI Bo,WANG Ze-jian,LIANG Jian-guang,LIU Ai-jun,LI Hai-dong. Breeding of High-yield Rifamycin SV Strain by Plasma Action Combined with Oxygen Restriction Model[J]. China Biotechnology, 2021, 41(2/3): 38-44.
[6] ZHOU Hui-ying,ZHOU Cui-xia,ZHANG Ting,WANG Xue-yu,ZHANG Hui-tu,JI Yi-zhi,LU Fu-ping. Enhancing the Expression of the Substrate by the Extracellular Secreted Enzymes and Improving the Alkaline Protease Production in Bacillus licheniformis[J]. China Biotechnology, 2021, 41(2/3): 53-62.
[7] WEI Zi-xiang,ZHANG Liu-qun,LEI Lei,HAN Zheng-gang,YANG Jiang-ke. Improving the Activity and Thermal Stability of Thermomyces lanuginosus Lipase by Rational Design[J]. China Biotechnology, 2021, 41(2/3): 63-69.
[8] DENG Rui,ZENG Jia-li,LU Xue-mei. Screening and Structure-activity Relationship Analysis of Anti-tumor Derived Peptides Based on Musca domestica cecropin[J]. China Biotechnology, 2021, 41(11): 14-22.
[9] FAN Yan,YANG Miao,XUE Song. High-throughput Screening of Benzoate Decarboxylase for High-efficiency Fixation of CO2 Based on Spectroscopy-image Grayscale Method[J]. China Biotechnology, 2021, 41(11): 55-63.
[10] CHA Ya-ping, ZHU Mu-zi, LI Shuang. Research Progress on In Vivo Continuous Directed Evolution[J]. China Biotechnology, 2021, 41(1): 42-51.
[11] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.
[12] LIN Shi-xin,LIU Dong-chen,LEI Yun,XIONG Sheng,XIE Qiu-ling. Screening, Expression and Specificity Detection of Anti-TNF-α Nanobody[J]. China Biotechnology, 2020, 40(7): 15-21.
[13] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Marine Candida Lipase Using Novel Epoxy Cross-linker and Amino Carrier[J]. China Biotechnology, 2020, 40(5): 57-68.
[14] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,SUN Ai-jun,HU Yun-feng. Immobilization of Lipase Through Cross-linking of Polyethylene Glycol Diglycidyl Ether with Amino Carrier LX-1000EA[J]. China Biotechnology, 2020, 40(1-2): 124-132.
[15] Heng ZHU,Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. Covalent Immobilization of Marine Candida Rugosa Lipase Using Amino Carrier[J]. China Biotechnology, 2019, 39(7): 71-78.