Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (5): 6-13    DOI: 10.13523/j.cb.20140502
    
DNA Polymerase Binding to the Primer/template Duplex Affects the Efficiency of PCR
YANG Qi-qi1, ZHANG Jun-wei1, ZHU Jian1,2, LIU Jian-ping1, HUANG Qiang1
1 State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China;
2 Shanghai Medicilon Inc., Shanghai 201299, China
Download: HTML   PDF(881KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Polymerase chain reaction (PCR) for DNA and RNA amplifications in vitro has a profound impact on modern molecular biology. Since design of proper primers is crucial for the success in PCR, many parameters have been used for primer design. However, the effect of DNA polymerase binding to primer/template duplex on PCR efficiency was not taken into account in conventional primer design programs. To reveal whether or not the DNA polymerase-primer/template binding affects the PCR efficiency, here we built structural models for the Taq DNA polymerase in complex with different primer/template sequences, and designed PCR primers according to relative binding free energies calculated by MM/GBSA method. We verified our primer design approach using Human Serum Albumin (HSA) gene and Mycobacterium tuberculosis pyrF gene, and found that the PCR efficiencies of different designed primers for both tested genes correlated well with the calculated binding free energies. Our finding indicates clearly that the DNA polymerase-primer/template binding affects the PCR efficiency significantly. Thus, the calculated binding free energy could be used as a new parameter to design efficient PCR primers.



Key wordsPCR      DNA polymerase      Primer design      Binding free energy      Molecular modeling     
Received: 18 March 2014      Published: 25 May 2014
ZTFLH:  Q819  
Fund:  

Supported by the grants from the Shanghai Leading Academic Discipline Project (B111) and the Shanghai Natural Science Foundation (13ZR1402400)

Cite this article:

YANG Qi-qi, ZHANG Jun-wei, ZHU Jian, LIU Jian-ping, HUANG Qiang. DNA Polymerase Binding to the Primer/template Duplex Affects the Efficiency of PCR. China Biotechnology, 2014, 34(5): 6-13.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140502     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I5/6


[1] Saiki R K, Gelfand D H, Stoffel S, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 1988, 239 (4839): 487-491.

[2] Terpe K, Overview of thermostable DNA polymerases for classical PCR applications: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biot, 2013, 97 (24): 10243-10254.

[3] Schochetman G, Ou C Y, Jones W K, Polymerase chain reaction. J Infect Dis, 1988, 158 (6): 1154-1157.

[4] Dieffenbach C, Lowe T, Dveksler G. General concepts for PCR primer design. Genome Res, 1993, 3 (3): S30-S37.

[5] Burpo F J. A critical review of PCR primer design algorithms and crosshybridization case study. Biochemistry, 2001, 218 1-12.

[6] Han J. Polymerase Preference Index. US Patent,A1,2012100089, 2012-07-26.

[7] Li Y, Korolev S, Waksman G, Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation, EMBO J., 1998, 17 (24): 7514-7525.

[8] Eom S H, Wang J, Steitz T A. Structure of Taq polymerase with DNA at the polymerase active site. Nature, 1996, 382 (6588): 278-281.

[9] Eswar N, Webb B, Marti-Renom M A, et al. Comparative protein structure modeling using Modeller. Curr. Protoc. Bioinformatics, 2006, 15:561-563.

[10] SaIi A, Blundell T. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol, 1993, 234 (3): 779-815.

[11] Chu S W, Noyes M B, Christensen R G, et al. Exploring the DNA-recognition potential of homeodomains. Genome Res, 2012, 22 (10): 1889-1898.

[12] Case D A, Cheatham T E, Darden T, et al. The Amber biomolecular simulation programs. J Comput Chem, 2005, 26 (16): 1668-1688.

[13] Hornak V, Abel R, Okur A, et al. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins, 2006, 65 (3): 712-725.

[14] Liu L A, Bradley P. Atomistic modeling of protein-DNA interaction specificity: progress and applications. Curr Opin Struc Biol, 2012, 22 (4): 397-405.

[15] Hou T, Wang J, Li Y, et al. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model, 2010, 51 (1): 69-82.

[16] Huang Q, Korte T, Rachakonda PS, et al. Energetics of the loop-to-helix transition leading to the coiled-coil structure of influenza virus hemagglutinin HA2 subunits. Proteins, 2009, 74 (2): 291-303.

[17] Huang Q, Herrmann A. Calculating pH-dependent free energy of proteins by using Monte Carlo protonation probabilities of ionizable residues. Protein Cell, 2012, 3 (3): 230-238.

[18] Saito K, Hamano K, Nakagawa M, et al. Conformational analysis of human serum albumin and its non-enzymatic glycation products using monoclonal antibodies. J Biochem, 2011, 149 (5): 569-580.

[19] Arraiano C M, Cruz A A, Kushner S R. Analysis of the in vivo decay of the Escherichia coli dicistronic pyrF-orfF transcript: evidence for multiple degradation pathways. J Mol Biol, 1997, 268 (2): 261-272.

[20] Schneider C A, Rasband W S, Eliceiri K W. NIH Image to ImageJ: 25 years of image analysis. Nat Methods, 2012, 9 (7): 671-675.

[21] Golosov A A, Warren J J, Beese L S, et al. The mechanism of the translocation step in DNA replication by DNA polymerase I: a computer simulation analysis. Structure, 2010, 18 (1): 83-93.

[22] Steitz T A. DNA-and RNA-dependent DNA polymerases. Curr Opin Struc Biol, 1993, 3 (1): 31-38.

[1] CHEN Zhong-wei,ZHENG Pu,CHEN Peng-cheng,WU Dan. Screening and Characterization of Thermostable Phytase Mutants[J]. China Biotechnology, 2021, 41(2/3): 30-37.
[2] PENG Xiang-lei,WANG Ye,WANG Li-nan,SU Yan-bin,FU Yuan-hui,ZHENG Yan-peng,HE Jin-sheng. Single-Primer PCR for Site-Directed Mutagenesis[J]. China Biotechnology, 2020, 40(8): 19-23.
[3] HUANG Zhao-hong,HUANG Yun-hong,HUANG Yan-mei,LONG Zhong-er,SHAN Shan. Advances in Detection and Typing of Diarrheal Escherichia coli with PCR[J]. China Biotechnology, 2020, 40(7): 82-90.
[4] LIU Li-yan,LIU Qi-qi,ZHANG Ying,WANG Sheng-qi. The Study of a Novel Nucleic Acid Detection Technology by Double-stranded Probe Real-time PCR[J]. China Biotechnology, 2020, 40(11): 28-34.
[5] YANG Lin,WANG Liu-yue,LI Hui-mei,CHEN Hua-bo. Multi-site Specific Mutagenesis by Multi-fragment Overlap Extension PCR[J]. China Biotechnology, 2019, 39(8): 52-58.
[6] Li DU,Ling-qia SU,Jing WU. Enhancing Maltose Affinity of Bacillus circulans 251 β-CGTase and its Application in Trehalose Preparation[J]. China Biotechnology, 2019, 39(5): 96-104.
[7] JIN Xue,SONG Jing-zhen,XIE Zhi-ping. Searching for the Subcellular Targeting Sequences of Ste2,a GPCR Protein in Saccharomyces cerevisiae[J]. China Biotechnology, 2019, 39(11): 39-53.
[8] Min-min ZHUANG,Xiao-hui JIA,Ding-ji SHI,Jia-cheng ZHU,Si-yu FENG,Pei-min HE,Rui JIA. vp28 Gene Expression and Photosynthetic Characteristics of Transgenic Synechococcus sp. PCC 7942[J]. China Biotechnology, 2018, 38(4): 30-37.
[9] Qi ZHANG,Lin YAO,Yan-hua JIANG,Feng-ling LI,Yuan ZHANG,Dong-qin XU,Wen-jia ZHU,Ying-ying GUO,Lian-zhu WANG,Yu-xiu ZHAI. Development of Armored RNA Reference Material of Norovirus Based on Qbeta Bacteriophage[J]. China Biotechnology, 2018, 38(1): 42-50.
[10] Jin ZHANG,Dan SI,Zhi-bang YANG,Yu-xia XIONG,Lian-ju MA,Jin-yang LI,Ren-ju JIANG. Study on New Genes Associated with Dexamethasone Degradation[J]. China Biotechnology, 2018, 38(1): 15-24.
[11] FU Li-wen, ZHANG Yu, YI Han, LI Xue, ZHU Nai-shuo. Establishment and Application of Multiplex Fluorescent Real-time PCR for Detecting Six Kinds of Animal Derived Materials[J]. China Biotechnology, 2017, 37(9): 48-59.
[12] ZHAO Zhi-guo, CUI Qiang, ZHAO Lin-li, WANG Hai-yan, LI Gang, LIU Lai-jun, AO Wei-hua, MA Cai-xia. Application Progress of the Technology of Droplet Digital PCR[J]. China Biotechnology, 2017, 37(6): 93-96.
[13] XU Zhen-yu, REN Hong-yan, BI Yan-zhen, ZHENG Xin-min, LI Li, ZHANG Jia-lan. Establishment of the Single-cell PCR System and Its Application in the Target-activity Detection of CRISPR/Cas9 System[J]. China Biotechnology, 2017, 37(2): 74-80.
[14] Yan-yan LIU,Hui-rong LI,Yue HU,Yang-yang FAN,Xiang-ming LI,Qing-qing TAN,Jia-qiang WU,Xun BU. Multiplex Fluorescent Real-time PCR Detection of Fox, Mink, Raccoon and Dog Derived Materials in Feedstuff[J]. China Biotechnology, 2017, 37(12): 67-76.
[15] ZHANG Li-li, XU Bi-yu, LIU Ju-hua, JIA Cai-hong, ZHANG Jian-bin, JIN Zhi-qiang. Analysis of Banana MaASR1 Gene Expression Profiles in Arabidopsis Under Drought Stress[J]. China Biotechnology, 2017, 37(11): 59-73.