Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (4): 30-37    DOI: 10.13523/j.cb.20180405
    
vp28 Gene Expression and Photosynthetic Characteristics of Transgenic Synechococcus sp. PCC 7942
Min-min ZHUANG1,Xiao-hui JIA1,2,Ding-ji SHI3(),Jia-cheng ZHU1,Si-yu FENG1,Pei-min HE1,Rui JIA1()
1 School of Ocean Ecology and Environment Shanghai Ocean University, Shanghai 201306 China
2 School of Biosciences,Beijing Normal University,Beijing 100875, China
3 Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
Download: HTML   PDF(841KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

White spot syndrome virus (WSSV) is one of the most harmful viruses in the shrimp industry, and there has been no effective drug on mass scale up to now. In recent years, the immunological prevention of WSSV from shrimp has been progressed hopefully.Vp28 protein is the major structural component on the envelope of WSSV. Since 2004, its coding genes have been expressed in 8 species, and the control of WSSV has been proved remarkably in the laboratory. However, it has not been applied in shrimp industry yet. The shrimp bait, Synechococcus sp.PCC7942 was used as the acceptor to express vp28 gene, and this homology of medicine and food may be helpful for its application in the shrimp industry. The expression efficiency of vp28 in transgenic Synechococcus sp.PCC7942 has been detected by RT-qPCR method. And photosynthetic characteristics of transgenic Synechococcus sp.PCC7942 at different temperature, illumination, pH and salinity have been measured by the method of oxygen electrode. The expression efficiency of vp28 gene was 9.52% which was three times higher than that of Anabaena sp. PCC 7120. The most suitable harvest time was in late logarithm growth (the 15 th d). The optimum growth conditions of transgenic Synechococcus sp.PCC7942 were as follows: the temperature 40℃, the salinity 0~0.1mol/L NaCl, pH 7.5, light intensity 450μmol/(m 2·s). These data may be useful for scale preparation of oral drug made from transgenic Synechococcus sp.PCC7942.



Key wordsTransgene Synechococcus with vp28 gene      Photosynthetic activity      RT-PCR      Expression of vp28 gene     
Received: 21 November 2017      Published: 08 May 2018
ZTFLH:  Q789  
Cite this article:

Min-min ZHUANG,Xiao-hui JIA,Ding-ji SHI,Jia-cheng ZHU,Si-yu FENG,Pei-min HE,Rui JIA. vp28 Gene Expression and Photosynthetic Characteristics of Transgenic Synechococcus sp. PCC 7942. China Biotechnology, 2018, 38(4): 30-37.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180405     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I4/30

Strain Antibiotic Features Source
Anabaena sp. PCC 7120 wild type Institute of Botany, Chinese Academy of Sciences
Empty vector type 7120 Neomycin transferred pRL-489
vp28 type 7120 Neomycin Harboring vp28 gene
Synechococcus sp. PCC 7942 wild type Institute of Botany, Chinese Academy of Sciences,
Tianjin University of Science &Technology
Empty vector type 7942 Kanamycin transferred pRL-489
vp28 type 7942 Kanamycin Harboring vp28 gene
Table 1 Cyanobacterial strains in this study
Primer name Primer sequence (5'-3') Size (bp)
vp28 forward AAGGATCCGGAGAGCGTCATGGATCTTTCTTTCAC 35
vp28 reverse CCCCCCGAATTCCACGATTTATTTACTCGGTCTC 34
Table 2 vp28 primer sequence
Stage Cycle Temperature(℃) Time Content Fluorescence signal acquisition
Initial 1倍 95 15min Initial No
PCR reaction 40倍 95 10s Denaturation No
50~60 20s Annealing No
72 30s Extend Yes
Table 3 Real-time fluorescence quantitative PCR reaction conditions
Fig.1 Western blot of Vp28 from the wild type, blank, and transgenic type of Synechococcus sp.7942
Fig.2 Agarose gel electropherogram of vp28 PCR and melting curve of purified vp28 gene
Fig.3 Standard curve of recovered pure vp28 fragment
Growth times 3 6 9 12 15 18
Average Ct value 21.03 21.92 19.17 19.99 17.84 20.62
Average copy number(copies/ml) 38 642 19 810 156 136 84 362 423 779 52 570
Table 4 Ct value and copy number of vp28 gene in transgenice Synechococcus sp.7942 at different growth stages
Growth times 3 6 9 12 15 18
Average Ct 21.65 22.88 20.32 19.28 20.62 20.87
Average copy number(copies/ml) 24 261 9 635 65 850 143 760 52 570 43 574
Table 5 Ct value and copy number of vp28 gene in transgenice Anabaena sp.7120 at different growth stages
Fig. 4 vp28 gene expression rates of transgenic Synechococcus sp.7942 during different growth stages
 
Fig.6 The responses of photosynthesis in the wild type and mutants of Synechococcus sp.7942 to environmental
(a) Photosynthesis-light curves (b) Photosynthesis - pH curves (c) Photosynthesis - temperature curves (d) Photosynthesis - salinity curves
Fig.7 Growth curves of wild type, empty vector type and transgenic type in Synechococcus sp.7942 type (detected at OD750 of spectro photo meter)
Fig.8 Growth curves of wild type, empty vector type and transgenic type of Synechococcus sp.7942
[1]   何培民, 郭媛媛, 贾晓会 , 等. 对虾白斑综合征病毒免疫防治研究进展. 海洋渔业, 2016,38(4):437-448.
[1]   he P M, Guo Y Y, Jia X H , et al. Research advance of immunology prevention of shrimp white spot syndrome virus. Marine Fisheries, 2016,38(4):437-448.
[2]   Nunan L M, Lightner D V . Optimized PCR assay for detection of white spot syndrome virus (WSSV). Journal of Virological Methods, 2011,171(1):318-321.
doi: 10.1016/j.jviromet.2010.11.015 pmid: 21111001
[3]   Inouye K, Miwa S, Oseko N , et al. Mass mortalities of cultured kuruma shrimp Penaeusjaponicus in Japan in 1993: electron microscopic evidence of the causative virus. Fish Pathology, 1994,29(2):149-158.
doi: 10.3147/jsfp.29.149
[4]   Seibert C H, Pinto A R . Challenges in shrimp aquaculture due to viral diseases: distribution and biology of the five major penaeid viruses and interventions to avoid viral incidence and dispersion. Brazilian Journal of Microbiology, 2012,43(3):857-864.
doi: 10.1590/S1517-83822012000300002 pmid: 24031899
[5]   Van Hulten M C, Witteveldt J, Snippe M , et al. White spot syndrome virus envelope protein VP28 is involved in the systemic infection of shrimp. Virology, 2001,285(2):228-233.
doi: 10.1006/viro.2001.0928 pmid: 11437657
[6]   Sánchiez-Paz A . White spot syndrome virus: an overview on an emergent concern. Veterinary Research, 2010,41(6):41-43.
doi: 10.1051/vetres/2010013 pmid: 2839792
[7]   Mu Y, Lan J, Zhang X , et al. Avector that expresses VP28 of WSSV can protect red swamp crayfish from white spot disease. Developmental and Comparative Immunology, 2012,36(2):442-449.
doi: 10.1016/j.dci.2011.08.009 pmid: 21906621
[8]   马晓燕, 李鹏, 严洁 , 等. 对虾白斑综合症病毒的概述. 南京师大学报(自然科学版), 2012,35(4):90-100.
[8]   Ma X Y, Li P, Yan J , et al. A review on shrimp white spot syndrome virus. Journal of Nanjing Normal University (Natural Science Edition), 2012,35(4):90-100.
[9]   Richard W, Castenhol Z . Culturing methods for cyanobacteria. Methods in Enzymol, 1988,167(3):68-95.
doi: 10.1016/0076-6879(88)67006-6
[10]   张春莉, 施定基, 黄倢 , 等. 白斑综合征病毒(WSSV)囊膜蛋白vp28基因的克隆及在蓝藻中表达载体的构建. 海洋科学, 2003,27(2):72-76.
doi: 10.3969/j.issn.1000-3096.2003.02.021
[10]   Zhang C L, Shi D J, Huang J , et al. Clone of envelope protein VP28 gene of white spot syndrome virus (WSSV) and expression vector construction for cyanobacteria. Marine Sciences, 2003,27(2):72-76.
doi: 10.3969/j.issn.1000-3096.2003.02.021
[11]   邓元告, 侯李君, 邓丽珍 , 等. 对虾白斑病毒VP28基因在聚球藻中的表达与分析. 天津科技大学学报, 2008,23(1):29-33.
[11]   Deng Y G, Hou L J, Deng L Z , et al. Expression and analysis of the WSSV VP28 gene in Synechococcus. Journal of Tianjin University of Science & Technology, 2008; 23(1):29-32.
[12]   Jia X H, Zhang C L, Shi D J , et al. Oral administration of Anabaena-expressed VP28 for both drug and food against white spot syndrome virus in shrimp. Journal of Applied Phycology, 2016,28(2):1001-1009.
doi: 10.1007/s10811-015-0607-4
[13]   孙溢华, 张正阳, 施定基 , 等. 一种聚球藻的无菌收集方法:中国,201510105583. 2015-03-09. 一种聚球藻的无菌收集方法:中国,201510105583.2015-03-09. .
[13]   Sun Y H, Zhang Z Y, Shi D J , et al. A sterile collection method for Synechococcus: China, 201510105583. 2015-03-09. A sterile collection method for Synechococcus: China, 201510105583.2015-03-09. .
[14]   Mendozacano F, Sanchezpaz A . Development and validation of a quantitative real-time polymerase chain assay for universal detection of the white spot pyndrome virus in marine crustaceans. Virology Journal, 2013,10(1):186-186.
doi: 10.1186/1743-422X-10-186
[15]   Stanier R Y, Kunisawa R, Mandel M , et al. Purificationand properties of unicellular blue-green algae (order Chroococcales). Bacteriological Reviews, 1971,35(2):171-205.
doi: 10.1016/0003-9861(71)90363-8 pmid: 378380
[16]   Shi D J . Energy metabolism and structure of immobilized cyano-bacterium Anabaena azollae. London: King’s College, 1987.
[17]   施定基, 周国飞, 方昭希 , 等. 发菜的光合作用、呼吸作用和形态学的研究. 植物学报, 1992,34(7):507-514.
doi: 10.1007/BF02005919
[17]   Shi D J, Zhou G F, Fang Z X , et al. Studies on photosynthesis, respiration and morphology of Nostoc Flagelliforme. Acta Botanica Sinica, 1992,34(7):507-514.
doi: 10.1007/BF02005919
[1] Qi ZHANG,Lin YAO,Yan-hua JIANG,Feng-ling LI,Yuan ZHANG,Dong-qin XU,Wen-jia ZHU,Ying-ying GUO,Lian-zhu WANG,Yu-xiu ZHAI. Development of Armored RNA Reference Material of Norovirus Based on Qbeta Bacteriophage[J]. China Biotechnology, 2018, 38(1): 42-50.
[2] LIU Li, YANG Xiao-hui, WANG Rui-ming. The Effect of KAT Gene Silencing by RNAi on the Synthesis of 10-HDA in Bees[J]. China Biotechnology, 2016, 36(4): 63-68.
[3] XU Deng-an, ZHAO Chun-qin, ZHANG Chi-hong, CHEN Jing. Expression Patterns of a Root-specific Barley Aquaporin Gene HvTIP2;1 and Promoter[J]. China Biotechnology, 2015, 35(7): 15-21.
[4] TIAN Qing-hua, LIN Yu, HUANG Qi-ping, FENG Quan-yi, ZHANG Hwan-you, ZHANG Yi-guo, WU Ze-zhi. Effects of Polydimethylsiloxane Micropillar Arrayed Topographic Substrates on the Morphology of the HepG2 Hepatoma Cells and Their Functional Gene Expression[J]. China Biotechnology, 2013, 33(10): 4-13.
[5] XU Yong, SHEN Chong, QIU Xing-tian, CAI Peng, HUANG Min-ren, YU Shi-yuan. Screening and Analysis of Genes Related to Xylose Fermentation to Ethanol in Candida tropiclis[J]. China Biotechnology, 2012, 32(11): 61-69.
[6] XU Yong, SHEN Chong, QIU Xing-tian, CAI Peng, HUANG Min-ren, YU Shi-yuan. Screening and Analysis of Genes Related to Xylose Fermentation to Ethanol in Candida tropiclis[J]. China Biotechnology, 2012, 32(11): 61-69.
[7] CHEN Zhong, LI Hao, LI Ying, WANG Jia, YE Mei-xia, GUO Bin, JI Le-xiang, AN Xin-min. Cloning and Expression Patterns of PtFT1 and PtFT2 from Populus tomentosa[J]. China Biotechnology, 2011, 31(12): 63-71.
[8] GUO Hao, ZOU Ming-qiang, YU Dong-sheng, LIU Xiao-lei, YUN Cai-lin, DU Jing-jiao. Comparison of Three Methods for Detection Newcastle Disease Virus[J]. China Biotechnology, 2011, 31(10): 68-74.
[9] WANG Wei, WEI Bryan, PUN Sing, QING Dong-jin, WONG Wai-shing, ZHANG Shi-hua, WANG Lei, LI Ning. Profiling of Gene Expression in the Reproductive Organs of Jatropha curcas[J]. China Biotechnology, 2011, 31(06): 38-48.
[10] MIAO Xiang-Yang, FENG Gao-Yong. Screening and Identification of Differentially Expressed Genes in Beijing Fatty Chicken and Broiler Adipose Tissue[J]. China Biotechnology, 2010, 30(03): 40-45.
[11] . Study on the Gene Expression of different parthenogenetic activation of Pig Preimplantation Embryos[J]. China Biotechnology, 2008, 28(8): 62-68.
[12] . Screening and Analysis of Anti-FMD Related Genes[J]. China Biotechnology, 2008, 28(7): 48-52.
[13] . Development of one step RT-PCR technique for detection of[J]. China Biotechnology, 2007, 27(5): 65-69.
[14] . Cloning and expression of two MADS-box genes from Castanea mollissima[J]. China Biotechnology, 2006, 26(0): 76-78.