Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (2): 38-44    DOI: 10.13523/j.cb.20150206
    
Expression, Purification and Characterization of β-N-acetylglucosaminidase from Aeromonas veronii B565
LIU Yang1, YANG Ya-lin2, ZHANG Yu-ting2, RAN Chao2, ZHOU Zhi-gang1,2
1. Fisheries Colloge of Huazhong Agricultural University, Wuhan 430070, China;
2. Feed Research Institute of Chinese Academy of Agriculture Sciences, Beijing 100081, China
Download: HTML   PDF(913KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

β-N-acetylglucosaminidase (chitobiase) gene nag565 from Aeromonas veronii B565 was cloned and expressed in E.coli. The deduced amino acid sequence of nag565 is most similar to those of other Aeromonas sp. The deduced sequence of NAG565 contained one putative signal peptide, one carbohydrate binding domain, two catalytic domain of glycosyl hydrolase family 20, and one chitobiase/beta-hexosaminidase C-terminal domain. Purified mature NAG565 has a specific activity of 7328 U/mg. NAG565 had an optimal activity at pH 7.0 and 37℃, showed good resistance to various metal ions and digestion by proteases. NAG565 retained almost all its optimal activity under aquaculture conditions (20~30℃ and pH 7.0). Taken together, the A. veronii B565 NAG565 may adapt to the environment of cultured fish gastrointestinal tract and may be potential aquacultural feed additive, facilitating the effective utilization of chitin.



Key wordsAeromonas veronii      β-N-acetylglucosaminidase      Expression      Enzymatic properties     
Received: 23 October 2014      Published: 25 February 2015
ZTFLH:  Q789  
Cite this article:

LIU Yang, YANG Ya-lin, ZHANG Yu-ting, RAN Chao, ZHOU Zhi-gang. Expression, Purification and Characterization of β-N-acetylglucosaminidase from Aeromonas veronii B565. China Biotechnology, 2015, 35(2): 38-44.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20150206     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I2/38


[1] Chen J K, Shen C R, Liu C L. N-acetylglucosamine: production and applications. Mar Drugs, 2010,8(9):2493-2516.

[2] Konopka J B. N-acetylglucosamine (GlcNAc) functions in cell signaling. Scientifica (Cairo), 2012,Article ID 489208.

[3] Yang S, Song S, Yan Q, et al. Biochemical characterization of the first fungal glycoside hydrolyase family 3 beta-N-acetylglucosaminidase from Rhizomucor miehei. J Agric Food Chem, 2014,62(22):5181-5190.

[4] Ueda M, Fujita Y, Kawaguchi T, et al. Cloning, nucleotide sequence and expression of the β-N-acetylglucosaminidase gene from Aeromonas sp. No. 10S-24. Journal of Bioscience and Bioengineering, 2000,89(2):164-169.

[5] Sukprasirt P, Wititsuwannakul R. A chitinolytic endochitinase and beta-N-acetylglucosaminidase-based system from Hevea latex in generating N-acetylglucosamine from chitin. Phytochemistry, 2014,104:5-11.

[6] Lan X, Zhang X, Kodaira R, et al. Gene cloning, expression, and characterization of a second beta-N-acetylglucosaminidase from the chitinolytic bacterium Aeromonas hydrophila strain SUWA-9. Biosci Biotechnol Biochem, 2008,72(2):492-498.

[7] Li Y, Liu Y, Zhou Z, et al. Complete genome sequence of Aeromonas veronii strain B565. J Bacteriol, 2011,193(13):3389-3390.

[8] Bradford M M.A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding.Anal Biochem,1976,72:248-254.

[9] Prag G, Papanikolau Y, Tavlas G, et al. Structures of chitobiase mutants complexed with the substrate Di-N-acetyl-d-glucosamine: the catalytic role of the conserved acidic pair, aspartate 539 and glutamate 540. J Mol Biol, 2000,300(3):611-617.

[10] Prakash D, Nawani N, Kapadnis B. Cloning, expression and characterization of thermophilic and alkalophilic N-acetylglucosaminidase from Streptomyces sp. NK52 for the targeted production of N-acetylglucosamine. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 2013, 83(3): 431-437.

[11] Eckert C, Lecerf M, Dubost L, et al. Functional analysis of AtlA, the major N-acetylglucosaminidase of Enterococcus faecalis. J Bacteriol, 2006,188(24):8513-8519.

[12] Yang S, Hua C, Yan Q, et al. Biochemical properties of a novel glycoside hydrolase family 1 β-glucosidase (PtBglu1) from Paecilomyces thermophila expressed in Pichia pastoris. Carbohydrate Polymers, 2013,92(1):784-791.

[13] Kim S, Matsuo I, Ajisaka K, et al. Cloning and characterization of the nagA gene that encodes beta-n-acetylglucosaminidase from Aspergillus nidulans and its expression in Aspergillus oryzae. Biosci Biotechnol Biochem, 2002,66(10):2168-2175.

[14] Ling Z, Suits M D, Bingham R J, et al. The X-ray crystal structure of an Arthrobacter protophormiae endo-β-N-acetylglucosaminidase reveals a (β/α)8 catalytic domain, two ancillary domains and active site residues key for transglycosylation activity. Journal of Molecular Biology, 2009,389(1):1-9.

[15] Tews I, Vincentelli R, Vorgias C E. N-Acetylglucosaminidase (chitobiase) from Serratia marcescens: gene sequence, and protein production and purification in Escherichia coli. Gene, 1996,170(1):63-67.

[16] Tsujibo H, Fujimoto K, Tanno H, et al. Gene sequence, purification and characterization of N-acetyl-beta-glucosaminidase from a marine bacterium, Alteromonas sp. strain O-7. Gene, 1994,146(1):111-115.

[17] Lin J, Xiao X, Zeng X, et al. Expression, characterization and mutagenesis of the gene encoding β-N-acetylglucosaminidase from Aeromonas caviae CB101. Enzyme and Microbial Technology, 2006,38(6):765-771.

[18] Tsujibo H, Hatano N, Mikami T, et al. A novel beta-N-acetylglucosaminidase from Streptomyces thermoviolaceus OPC-520: gene cloning, expression, and assignment to family 3 of the glycosyl hydrolases. Appl Environ Microbiol, 1998,64(8):2920-2924.

[19] Park J K, Kim W J, Park Y I. Purification and characterization of an exo-type beta-N-acetylglucosaminidase from Pseudomonas fluorescens JK-0412. J Appl Microbiol, 2011,110(1):277-286.

[20] Murakami S, Takaoka Y, Ashida H, et al. Identification and characterization of endo-beta-N-acetylglucosaminidase from methylotrophic yeast Ogataea minuta. Glycobiology, 2013,23(6):736-744.

[21] O'Connell E, Murray P, Piggott C, et al. Purification and characterization of a N-acetylglucosaminidase produced by Talaromyces emersonii during growth on algal fucoidan. Journal of Applied Phycology, 2008, 20(5): 557-565.

[22] Bassler B L, Yu C, Lee Y C, et al. Chitin utilization by marine bacteria. Degradation and catabolism of chitin oligosaccharides by Vibrio furnissii. J Biol Chem, 1991,266(36):24276-24286.

[1] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.
[2] LI Bing,ZHANG Chuan-bo,SONG Kai,LU Wen-yu. Research Progress in Biosynthesis of Rare Ginsenosides[J]. China Biotechnology, 2021, 41(6): 71-88.
[3] WANG Hui-lin,ZHOU Kai-qiang,ZHU Hong-yu,WANG Li-jing,YANG Zhong-fan,XU Ming-bo,CAO Rong-yue. Research Progress of Human Coagulation Factor VII and the Recombinant Expression Systems[J]. China Biotechnology, 2021, 41(2/3): 129-137.
[4] ZHANG Lei,TANG Yong-kai,LI Hong-xia,LI Jian-lin,XU Yu-xin,LI Ying-bin,YU Ju-hua. Advances in Promoting Solubility of Prokaryotic Expressed Proteins[J]. China Biotechnology, 2021, 41(2/3): 138-149.
[5] LIU Mei-qin,GAO Bo,JIAO Yue-ying,LI Wei,YU Jie-mei,PENG Xiang-lei,ZHENG Yan-peng,FU Yuan-hui,HE Jin-sheng. Long Non-coding RNA Expression Profile in A549 Cells Infected with Human Respiratory Syncytial Virus[J]. China Biotechnology, 2021, 41(2/3): 7-13.
[6] YANG Xi,LUAN Yu-shi. Preliminary Study of Sly-miR399 in Tomato Resistance to Late Blight[J]. China Biotechnology, 2021, 41(11): 23-31.
[7] CHEN Su-fang,XIA Ming-yin,ZENG Li-yan,AN Xiao-qin,TIAN Min-fang,PENG Jian. Recombinant Expression and Detection of Antimicrobial Activity of Cec4a[J]. China Biotechnology, 2021, 41(10): 12-18.
[8] LIANG Ai-ling,LIU Wen-ting,WU Pan,LI Qian,GAO Jian,ZHANG Jie,LIU Wei-dong,JIA Shi-ru,ZHENG Ying-ying. Characterization and Function of Key Amino Acids in Substrate Bingding Center of a Novel Zearalenone Hydrolase from Exophiala aquamarina[J]. China Biotechnology, 2021, 41(10): 19-27.
[9] SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast[J]. China Biotechnology, 2021, 41(1): 72-79.
[10] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[11] DENG Tong,ZHOU Hai-sheng,WU Jian-ping,YANG Li-rong. Enhance Soluble Heteroexpression of a NADPH-Dependent Alcohol Dehydrogenase Based on the Chaperone Strategy[J]. China Biotechnology, 2020, 40(8): 24-32.
[12] ZHANG Xiao-hang,LI Yuan-yuan,JIA Min-xuan,GU Qi. Identification and Expression of Elastin-like Polypeptides[J]. China Biotechnology, 2020, 40(8): 33-40.
[13] LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng. Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay[J]. China Biotechnology, 2020, 40(8): 41-48.
[14] JIANG Dan-dan,WANG Yun-long,LI Yu-lin,Zhang Yi-qing. Study on the Delivery of RGD Modified Virus-Like Particles to ICG Targeted Tumors[J]. China Biotechnology, 2020, 40(7): 22-29.
[15] CHENG Xu,YANG Yu-qing,WU Sai-nan,HOU Qin-long,LI Yong-mei,HAN Hui-ming. Construction of DNA Vaccines of Staphylococcus aureus SarA, IcaA and Their Fusion Genes and Preliminary Study in Mouse Immune Response[J]. China Biotechnology, 2020, 40(7): 41-50.