Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (08): 76-81    DOI: Q939.96
    
Screening, Identification and Virulence Factor Determination of the Bacteria with Nematicidal Activity to Bursaphelenchus xylophilus
NIU Qiu-hong,DONG Bing-xue,HUANG Si-liang,HUI Feng-li,KE Tao,ZHANG Lin
School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, China
Download: HTML   PDF(699KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

One hundred and ninety eight bacteria were isolated and tested for their nematicidal activity from the soil in Nanyang, Henan Province, China. Six strains which had nematicidal activity to Bursaphelenchus xylophilus were found. A bacterium, named Bacillus sp. strain NS-3, showed the highest nematicidal activity to B xylophilus. The bacterium was classified by phenotypic and genotypic characteristics, which belonged to Bacillus genus. The culture supernatant and the crude extracellular protein extract from the strain NS-3 separately killed 50 % and 100 % of the tested nematodes (B. xylophilus) within 48 h, which suggested their high toxic activity toward the nematodes. Most of the dead nematodes were degraded and only minor fragments were left. However, the crude protein extract lost nematicidal activity after boiled, which showed the namaticidal materials produced in the cultural filtrate by the bacterium was not stable to the heat.



Key wordsBursaphelenchus xylophilus      Bacillus      Virulence factor     
Received: 15 January 2010      Published: 25 August 2010
Cite this article:

NIU Qiu-Gong, DONG Bing-Xue, HUANG Sai-Liang, HUI Feng-Li, KE Chao, ZHANG Lin. Screening, Identification and Virulence Factor Determination of the Bacteria with Nematicidal Activity to Bursaphelenchus xylophilus. China Biotechnology, 2010, 30(08): 76-81.

URL:

https://manu60.magtech.com.cn/biotech/Q939.96     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I08/76

[1] 董锦艳, 李铷, 张克勤. 松材线虫生物防治研究进展. 植物保护, 2005, 31 (5) : 915. Dong J Y, Li R, Zhang K Q. Plant Protection, 2005, 31 (5): 915. 
[2] Yang J K, Li J, Liang L M, et al. Cloning and characterization of an extracellular serine protease from the nematodetrapping fungus Arthrobotrys conoides. Arch Microbiol, 2007, 188: 167174. 
[3] 茆振川.防治根结线虫的原核生防菌的筛选及作用.杨凌: 西北农林科技大学, 2004. Mao Z C. Screening and function of biocontrol microbes against root knot nematodes . Yangling: Northwest SciTech University of Agriculture and Forestry, 2004. 
[4] 牛秋红, 黄晓玮, 徐进, 等. 细菌在线虫生防中应用的研究进展.生物技术, 2006 , 16 (1) : 9095. Niu Q H, Huang X W, Xu J, et al. Biotechnology, 2006, 16 (1): 9095. 
[5] Niu Q H, Huang X W, Zhang L, et al. Functional identification of the gene bace16 from nematophagous bacterium Bacillus nematocida. Appl Microbiol Biotechnol, 2007, 75(1): 141148. 
[6] Tian B Y, Yang J K, Zhang K Q. Bacteria used in biocontrol nematode: potential, development and perspective. FEMS Microbiol Ecol, 2007, 61: 197213. 
[7] Siddiqui I A, Haas D, Heeb S. Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the rootknot nematode Meloidogyne incognita. Appl Environ Microbiol, 2005, 71(9): 56465649. 
[8] Wei J Z, Hale K, Carta L, et al. Bacillus thuringiensis crystal proteins that target nematodes. Proc Natl Acad Sci USA, 2003, 100(5): 27602765. 
[9] 海外传真. 农药, 2007, 46 (9) : 647. Overseas fax. Pesticide, 2007, 46 (9): 647. 
[10] Gray N F. Ecology of nematophagous fungi: comparison of the soil sprinkling method with the Baerman funnel technique in the isolation of endoparasites. Soil Biol Biochem, 1984, 16: 81~83. 
[11] 黄秀梨. 微生物学实验指导. 北京: 高等教育出版社, 2004. Huang X L. Experimental Guidance of Microbiology. Beijing: Higher Education Press, 2004. 
[12] Xu P, Li W J, Xu L H, et al. A microwavebased method for genomic DNA extraction from Actinomycetes, Microbiology, 2003, 30 (4): 7375. 
[13] Higgins D G, Bleasby A J, Fuchs R CLUSTAL V: Improved software for multiple sequence alignment. Comput Appl Biosci, 1992, 8: 189191. 
[14] Thompson J D, Gibson T J, Plewniak F, et al. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997, 24: 48764882. 
[15] Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequence. J Mol Evol, 1980, 16:111120. 
[16] Saitou N, Nei M. The neighborjoining method: a new method for reconstructing phylogenetic tree. Mol Biol Evol, 1987, 4: 406425. 
[17] Kumars S, Tamura K, Nei M. MEGA 3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bio informatics, 2004, 5: 150163. 
[18] Stirling G R, Wachtel M F. Mass production of Bacillus penetrans for the biological control of rootknot nematodes. Nematologica, 1980, 26: 308312. 
[19] KerenZur M, Antonov J, Bercovitz A, et al. Bacillus firmus formulations for the safe control of rootknot nematodes. In: Proceedings of the Brighton Crop Protection Conference on Pests and Diseases, 2000, vol. 2A, 4752. 
[20] Giannakou I O, Karpouzas D G. Demetra ProphetouAthanasiadou. A novel nonchemical nematicide for the control of rootknot nematodes. Applied Soil Ecology, 2004, 26: 6979. 
[21] Soad A A, Xie G L, Li B, et al. Comparative performance of Bacillus spp. in growth promotion and suppression of tomato bacterial wilts caused by Ralstonia solanacearum. Journal of Zhejiang University (Agric & Life Sci), 2004, 30(6): 603610. 
[22] Huang X W, Tian B Y, Niu Q H, et al. An extracellular protease from Brevibacillus laterosporus G4 without parasporal crystals can serve as a pathogenic factor in infection of nematodes. Res Microbiol, 2005, 156: 719727. 
[23] Lian L H, Tian B Y, Xiong R, et al. Proteases from Bacillus: a new insight on the mechanism of action for rhizobacterial suppression of nematode populations. Letters in Applied Mircobiology, 2007, 45: 262269. 
[24] Chen X H, Koumoutsi A, Scholz R, et al. Comparative analysis of the complete genome sequence of the plant growthpromoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol, 2007, 25: 10071014.

[1] WANG Xiao-jie,MENG Fan-qiang,ZHOU Li-bang,LV Feng-xia,BIE Xiao-mei,ZHAO Hai-zhen,LU Zhao-xin. Breeding of Brevibacillin Producing Strain by Genome Shuffling and Optimization of Culture Conditions[J]. China Biotechnology, 2021, 41(8): 42-51.
[2] SUN Yao,QIAO Meng-wei,LIU Shi-yu,GONG Dian-liang,SONG Jin-zhu. Research Progress on the Inhibitory Effect of Lactobacillus on Pathogenic Pseudomonas[J]. China Biotechnology, 2021, 41(8): 103-109.
[3] ZHOU Hui-ying,ZHOU Cui-xia,ZHANG Ting,WANG Xue-yu,ZHANG Hui-tu,JI Yi-zhi,LU Fu-ping. Enhancing the Expression of the Substrate by the Extracellular Secreted Enzymes and Improving the Alkaline Protease Production in Bacillus licheniformis[J]. China Biotechnology, 2021, 41(2/3): 53-62.
[4] CHEN Dong,LI Cheng-cheng,SHI Zhong-ping. Lactobacillus plantarum Exopolysaccharide Coated High-Stable Selenium Nanoparticles and Its Antioxidant Activity[J]. China Biotechnology, 2020, 40(9): 18-27.
[5] MEI Yu-wei,YANG Zi-yun,YU Fan,LONG Xu-wei. Recent Progress on Fermentation and Antibacterial Applications of Surfactin[J]. China Biotechnology, 2020, 40(5): 105-116.
[6] MA Cui-ping,LIU Duo-duo,PAN Bing-ju,SHEN Hui-tao,SONG Ya-jian. Cloning and Characterization of Acetylesterase AesA Derived from Mannan Utilization Gene Cluster of Bacillus sp. N16-5[J]. China Biotechnology, 2020, 40(3): 65-71.
[7] HU Yan-hong,GONG Xue-mei,Ding Liu-liu,GAO Song,LI Ting-ting. Highly Efficient Expression and Purification of Ketoreductase CgKR2 Using Brevibacillus choshinensis SP3[J]. China Biotechnology, 2019, 39(8): 59-65.
[8] WANG Gang,XIAO Yu,LI Yi,LIU Zhi-gang,PEI Cheng-li,WU Li-da,LI Yan-li,WANG Xi-qing,ZHANG Ming-lei,CHEN Guang,TONG Yi. Effect of ldhL Gene Knock out Mutant on Lactobacillus delbrueckii subsp. blgaricus Producing L-lactic Acid[J]. China Biotechnology, 2019, 39(8): 66-73.
[9] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[10] Yu-feng XIE,Xue-mei HAN,Fu-ping LU. Expression, Purification and Enzymatic Properties of β-glucosidase from Lactobacillus paracasei[J]. China Biotechnology, 2019, 39(5): 72-79.
[11] Fa-bin LI,Lu LIU,Yan DU,Rui Ban. Construction of Recombinant Bacillus subtilis as Catalyst for Preparing D- p-Hydroxyphenylglycine[J]. China Biotechnology, 2019, 39(3): 75-86.
[12] AN Ming-hui,TIAN Wen,HAN Xiao-xu,SHANG Hong. Construction and Phenotypic Analyses of Recombinant Lactobacillus Expressing Single-Chain Antibody of HIV[J]. China Biotechnology, 2019, 39(10): 1-8.
[13] Gong CHENG,Si-ming JIAO,Li-shi REN,Cui FENG,Yu-guang DU. Preparation and Composition Analysis of Chitooligosaccharides with Low Degree of Deacetylation by Hydrolysis of Bacillus subtilis Chitosanase[J]. China Biotechnology, 2018, 38(9): 19-26.
[14] Fan SUN,Ling-qia SU,Kang ZHANG,Jing WU. D-psicose 3-epimerase Gene Overexpression in Bacillus subtilis and Immobilization of Cells[J]. China Biotechnology, 2018, 38(7): 83-88.
[15] Nan WANG,Lv-hua JIN,Ling ZHANG,Rong LIN,Hai-lin YANG. The Effect of Signal Peptides on the Expression of Leucine Dehydrogenase and Enzymatic Properties in Bacillus subtilis[J]. China Biotechnology, 2018, 38(4): 46-53.