Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (5): 72-79    DOI: 10.13523/j.cb.20190508
    
Expression, Purification and Enzymatic Properties of β-glucosidase from Lactobacillus paracasei
Yu-feng XIE1,2,Xue-mei HAN1,Fu-ping LU1,**()
1 State Key Laboratory of Food Nutrition and Safety, College of Biotechnology,Tianjin University of Science & Technology, Tianjin 300457, China
2 College of Food Science and Engineering, Harbin University, Harbin 150086,China
Download: HTML   PDF(902KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To improve the conversion efficiency of glucoside to small molecule compounds, the gene encoded β-glucosidase from Lactobacillus paracasei TK1501 was inserted into pET28a(+), and further transformed into E. coli BL21(DE3) for heterologous expression. The recombinant enzyme, which purified by nickel affinity chromatography, is conferred with the high specific activity of 675.56U/mg, and the molecular weight of 86.63kDa.The biochemical characterization of this recombinant enzyme shows that it exhibit the highest bio-activity in 30℃ and pH of 6.5, and the β-glucosidase activity was barely inhibited by Mg 2+ and Ca 2+, but largely by Cu 2+ with even no catalytic activity. It was also found that this enzyme possess a broad substrates specificity toward genistin, daidzin, daidzein, geniposide, salicin, heptosporin, polydatin and arbutin. Finally, The kinetics characteristics shows that Km and Vmax of this enzyme are 1.44mmol/L and 58.32mmol/(L·s), respectively, and the catalytic coefficient (kcat) is 3 982/s using β-pNPG as the substrate. The all results above show that the β-Glucosidases from Lactobacillus paracasei TK1501 play important roles in the process of hydrolysis of soybean isoflavone and synthesis of glycosides.



Key wordsLactobacillus paracasei      β-glucosidase      Purification      Enzymatic properties     
Received: 15 October 2018      Published: 04 June 2019
ZTFLH:  Q814  
Corresponding Authors: Fu-ping LU     E-mail: lfp@tust.edu.cn
Cite this article:

Yu-feng XIE,Xue-mei HAN,Fu-ping LU. Expression, Purification and Enzymatic Properties of β-glucosidase from Lactobacillus paracasei. China Biotechnology, 2019, 39(5): 72-79.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190508     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I5/72

Fig.1 Identification of PCR amplify M: Marker;1,2: Gene of β-glucosidase
Fig.2 Identification of recombinant plasmids digested with Hind III and XhoI M:Marker;1:pET-GLU recombinant plasmids;2,3:pET-GLU digested with Hind III/XhoI;4: pET-GLU digested with Hind III and XhoI
Fig.3 SDS-PAGE of purified GLU-1 M: Marker; 1: Whole cell liquor induced at 0.1mmol/L IPTG; 2: Supernatant; 3:Precipitant; 4: Flowthrough; 5: Binding buffer; 6: Washing buffer; 7: Elution buffer; 8: Resin after elution
Fig.4 Effect of temperature on β-glucosidase activity The activity of β-glucosidase toward β-pNPG in optimal condition is represented as 100%
Fig.5 Thermo stability of β-glucosidase The activity without preincubation is represented as 100%
Fig.6 Effect of pH on β-glucosidase activity The activity of β-glucosidase toward β-pNPG in optimal condition is represented as 100%
Fig.7 pH stability of β-glucosidase The activity without preincubation is represented as 100%
Fig.8 Effects of metal ions on β-glucosidase activity Metal ions were added at the final concentrations of 1mmol/L. The activity of β-glucosidase toward β-pNPG without metal is represented as 100%
Fig.9 Substrate saturation curves of β-glucosidase
Fig.10 Structures of substrates (a) Geniposide (b) Salicin (c) Polydatin (d) Heptaside (e) Arbutin
Fig.11 HLPC chromatogram of the specificity of substrates (a) Sample of geniposide (b) Hydrolyzed sample of geniposide (c)Sample of salicin (d) Hydrolyzed sample of salicin (e) Sample of polydatin (f) Hydrolyzed sample of polydatin (g) Sample of heptaside (h) Hydrolyzed sample of heptaside (i) Sample of arbutin (j) Hydrolyzed sample of arbutin
底物 Km
(mmol/L)
kcat
(/s)
kcat/Km
[mmol/(L·s)]
相对酶活
(%)
pNPG 1.44±0.08 3982±14 2765 100
Geniposide 2.87±0.05 2520±23 878 35±1.5
Salicin 2.25±0.01 2973±88 1320 47±1.8
Polydatin 5.71±0.10 1728±45 302 16±0.6
Heptaside 3.61±0.08 2207±38 611 25±0.9
Arbutin 1.92±0.03 3569±72 1858 52±1.4
Table 1 Kinetic parameters of β-glucosidase toward different substrates
Fig.12 Comparison of hydrolysis and synthesis with β-glucosidase
[1]   James R, Bancha M, Supaporn B , et al. β-Glucosidases: Multitasking,moonlighting or simply misunderstood. Plant Science, 2015,24(1):246-259.
[2]   郑芳芳, 王金佩, 林宇, 等. 链霉菌GXT6 β-葡萄糖苷酶的酶学性质及葡萄糖耐受性分子改造. 微生物学报, 2018,58(10):1839-1852.
[2]   Zheng F F, Wang J P, Lin Y , et al. Characterization of β-glucosidase from Streptomyces sp. GXT6 and its molecular modification of glucose tolerance. Acta Microbiologica Sinica, 2018,58(10):1839-1852.
[3]   王锐丽 . 嗜热菌β-葡萄糖苷酶 A水解大豆异黄酮的研究. 安徽农学通报, 2016,22(18):26-28.
[3]   Wang R L . Hydrolysis of soybean isoflavone by β-glucosidases A from Thermoanaerobacter etholicus. Anhui Agricultural Science Bulletin, 2016,22(18):26-28.
[4]   Messina M, Erdman J, Setchell K D . Introduction to and perspectives from the Fifth International Symposium on the role of soy in preventing and treating chronic disease. The Journal of Nutrition, 2004,134(5):1205S-1206S.
doi: 10.1093/jn/134.5.1205S
[5]   Tsangalis D, Ashton J, McGill A , et al.Biotransformation of isoflavones by bifidobacteria in fermented soymilk supplemented with D-glucose and L-Cysteine. Journal of Food Science, 2003,68(2):623-631.
doi: 10.1111/jfds.2003.68.issue-2
[6]   Messina M . Soy foods, isoflavones, and the health of postmenopausal women. The American Journal of Clinical Nutrition, 2014,100(suppl):423S-430S.
doi: 10.3945/ajcn.113.071464
[7]   Chun J, Kim G M, Lee K W , et al. Conversion of isoflavone glucosides to aglycones in soymilk by fermentation with lactic acid bacteria. Journal of Food Science, 2007,72(2):M39-M44.
doi: 10.1111/jfds.2007.72.issue-2
[8]   Hati S, Vij S, Singh B P , et al. β-Glucosidase activity and bioconversion of isoflavones during fermentation of soymilk. Food Research International, 2015,95(1):216-220.
[9]   孙国祥, 吴美仙 . β-葡萄糖苷酶水解结合型大豆异黄酮参数相关性研究. 浙江海洋学院学报(自然科学版), 2014,33(3):284-289.
[9]   Sun G X, Wu M X . Correlation study on parameters of hydrolysis soy isoflavones and β-glucosidases. Journal of Zhejiang Ocean University (Natural Science), 2014,33(3):284-289.
[10]   Mergulhaoa F J, Summersb D K, Monteiro G A . Recombinant protein secretion in Escherichia coli. Biotechnology Advances, 2005,23(3):177-202.
doi: 10.1016/j.biotechadv.2004.11.003
[11]   Sorensen H P, Mortensen K K . Advanced genetic strategies for recombinant protein expression in Escherichia coli. Journal of Biotechnology, 2005,115(2):113-128.
doi: 10.1016/j.jbiotec.2004.08.004
[12]   商永梅, 包永红 . 类芽孢杆菌属β-葡萄糖苷酶在大肠杆菌中可溶性重组表达的优化. 食品工业科技, 2014,35(23):186-190.
[12]   Shang Y M, Bao Y H . Optimization of soluble expression of recombinant Paenibacillus sp. β-glucosidase in Escherichia coli. Science and Technology of Food Industy, 2014,35(23):186-190.
[13]   江民华, 林厚民, 尹金阳 , 等. 差异柠檬酸杆菌GXW-1β-葡萄糖苷酶的酶学性质及分子改造. 微生物学报, 2017,57(3):363-374.
[13]   Jiang M H, Lin H M, Yin J Y , et al. Characterization and molecular modification of β-glucosidase from Citrobacter koser GXW-1. Acta Microbiologica Sinica, 2017,57(3):363-374.
[14]   李娟, 汤斌, 李松 , 等. 匍枝根霉β-葡萄糖苷酶 BGLIII 关键位点的结构功能. 食品与发酵工业, 2015,41(2):1-6.
[14]   Li J, Tang B, Li S , et al. Structure and function of the key site of β-glucosidase BGLIII from Rhizopus stolonifer. Food and Fermentation Industries, 2015,41(2):1-6.
[15]   闫青 . 黑曲霉耐热β-葡萄糖苷酶的分离纯化及结构分析. 秦皇岛:河北科技师范学院, 2016.
[15]   Yan Q . Isolation,Purification and structure characterization of thermal resistant β-glucosidase of Aspergillus niger. Qinghuangdao:Hebei Normal University of Science and Technology, 2016.
[16]   钱利纯 . 高效水解大豆异黄酮β-葡萄糖苷酶及其对肉公鸡生产性能的影响研究. 杭州:浙江大学, 2008.
[16]   Qian L C . The hydrolyzing efficiency of isoflavone by β-glucosidase and effect of the enzyme on the growth performance of male broiler. Hangzhou:Zhejiang University, 2008.
[17]   赵云, 刘伟丰, 毛爱军 , 等. 多粘芽孢杆菌(Bacillus polymyxa)-葡萄糖苷酶基因在大肠杆菌中的表达,纯化及酶学性质分析. 生物工程学报, 2004,20(5):741-744.
[17]   Zhao Y, Liu W F, Mao A J , et al. Expression,purification and enzymatic characterization of Bacillus polymyxa β-glucosidase gene(bglA)in Escherichia coli. Chinese Journal of Biotechnology, 2004,20(5):741-744.
[18]   Maekawa A, Hayase M, Yubisui T , et al. A cDNA cloned from Physarum polycephalum,encodes new type of family 3 β-glucosidase that is a fusion protein containing a calx-β motif. The International Journal of Biochemistry and Cell Biology, 2006,38(12):2164-2172.
doi: 10.1016/j.biocel.2006.06.010
[1] ZHANG Ling,CAO Xiao-dan,YANG Hai-xu,LI Wen-lei. The Application of Continuous Purification in Affinity Chromatography and Evaluation of Production Scale-up[J]. China Biotechnology, 2021, 41(6): 38-44.
[2] LIANG Ai-ling,LIU Wen-ting,WU Pan,LI Qian,GAO Jian,ZHANG Jie,LIU Wei-dong,JIA Shi-ru,ZHENG Ying-ying. Characterization and Function of Key Amino Acids in Substrate Bingding Center of a Novel Zearalenone Hydrolase from Exophiala aquamarina[J]. China Biotechnology, 2021, 41(10): 19-27.
[3] LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng. Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay[J]. China Biotechnology, 2020, 40(8): 41-48.
[4] JIANG Dan-dan,WANG Yun-long,LI Yu-lin,Zhang Yi-qing. Study on the Delivery of RGD Modified Virus-Like Particles to ICG Targeted Tumors[J]. China Biotechnology, 2020, 40(7): 22-29.
[5] XIE Hang-hang,BAI Hong-mei,YE Chao,CHEN Yong-jun,YUAN Ming-cui,MA Yan-bing. The Purification Procedure for the Recombinant HBcAg Virus-like Particle Easy to Generate Aggregation[J]. China Biotechnology, 2020, 40(5): 40-47.
[6] WEI Wei,CHANG Bao-gen,WANG Ying,LU Fu-ping,LIU Fu-feng. Heterologous Expression, Purification and Aggregation Characterization of Tau Core Fragment 306-378[J]. China Biotechnology, 2020, 40(5): 22-29.
[7] LIU Zhen-zhen,TIAN Da-yong. Development of Sucrose Density Gradient Centrifugation Purification Process for Rabies Vaccine[J]. China Biotechnology, 2020, 40(4): 25-33.
[8] ZHU Tong-tong,YANG Lei,LIU Ying-bao,SUN Wen-xiu,ZHANG Xiu-guo. Purification and Crystallization of PcCRN20-C from Phytophthora capsici[J]. China Biotechnology, 2020, 40(1-2): 116-123.
[9] PAN Bing-jv,ZHANG Wan-yi,SHEN Hui-tao,LIU Ting-ting,LI Zhong-yuan,LUO Xue-gang,SONG Ya-jian. Research Progress on Separation and Purification of Mannan Oligosaccharide[J]. China Biotechnology, 2020, 40(11): 90-95.
[10] Fei WANG,Chun-hui HU,hao YU. Catalytic Mechanism of 6-Hydroxynicotinic Acid 3-Monooxygenase (NicC)[J]. China Biotechnology, 2019, 39(7): 15-23.
[11] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[12] JING Jia-mei,XUN Xin,WANG Min,PENG Ru-chao,SHI Yi. Expression and Purification of C-terminal of Arenavirus Polymerase and Screening of Crystallization Conditions[J]. China Biotechnology, 2019, 39(12): 18-23.
[13] ZHU Meng-lu,WANG Xue-yu,LIU Xin,LU Fu-ping,SUN Deng-yue,QIN Hui-min. Heterologous Expression, Purification and Enzymatic Properties of a Novel Leucine 5-Hydroxylase[J]. China Biotechnology, 2019, 39(12): 24-34.
[14] Chao-di TONG,Jian-ping WU,Li-rong YANG,Gang XU. Crystal Structural Analysis of DehDIV-R by X-ray Crystallography[J]. China Biotechnology, 2018, 38(8): 19-25.
[15] Jun-jun CHEN,Ying LOU,Yuan-xing ZHANG,Qin LIU,Xiao-hong LIU. Expression and Purification of Proliferating Cell Nuclear Antigen in Spodoptera frugiperda Cells[J]. China Biotechnology, 2018, 38(7): 14-20.