Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (01): 103-108    DOI:
    
Research Progress in Cellulosome Application in Bio-ethnol
HUANG Jun1,2, CHEN Dong1,2, HUANG Ri-bo1,2
1. College of Life Science and Biotechnology, Guangxi University, Nanning 530004, China;
2. State Key Laboratory of Bioenergy Enzyme Technology, Guangxi Academy of Sciences, Nationl Engineering Research Center for Non food Biorefinery, Nanning 530007, China
Download: HTML   PDF(430KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Cellulosome plays important roles in lignocellulose degradation.The cellulosome not only secreted enzymes degrade lignocellulose,but also can assemble multi-enzyme complexes which has an effective catalytic activity. The basic sructure and function of cellulosome was described,summarizes the applications progrsses in bioethanol,and analyzed the perspectives and challenges.



Key wordsCellulosome      Biofuel      Application     
Received: 06 August 2010      Published: 25 January 2011
ZTFLH:  Q539+.3  
Cite this article:

HUANG Jun, CHEN Dong, HUANG Ri-bo. Research Progress in Cellulosome Application in Bio-ethnol. China Biotechnology, 2011, 31(01): 103-108.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I01/103


[1] Lamed R, Setter E, Bayer E A.Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol, 1983,156:828-836.

[2] Miranda M, Leung K T, Qin W S.The prospects of cellulose producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci,2009,5:500-516.

[3] Li X L, Chen H, Ljungdahl L G.Two cellulases, CelA and CelC, from the polycentric anaerobic fungus Orpinomyces strain PC-2 contain N-terminal docking domains for a cellulose-hemicellulase complex. Appl Environ Microbiol,1997,63:4721-4728.

[4] Bayer E A, Lamed R, White B A, et al.From cellulosomes to cellulosomics. Chem Rec,2008,8:364-377.

[5] Alber O, Noach I, Lamed R, et al.Preliminary X-ray characterization of a novel type of anchoring cohesion from the cellulosome of Ruminococcus flavefaciens. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2008,64:77-80.

[6] Ding S Y, Rincon M T, Lamed R,et al. Cellulosomal scaffoldin-like proteins from Ruminococcus ?avefaciens. J Bacteriol,2001,183:1945-1953.

[7] Boraston A B, McLean B W, Kormos J M, et al .Carbohydrate-binding modules: diversity of structure and function. In: Gilbert H J, Davies G J, Henrissat B, et al. Recent Advances in Carbohydrate Bioengineering. Cambridge: Royal Society of Chemistry, 1999. 202-211.

[8] Lehtio J, Sugiyama J, Gustavsson M, et al.The binding specificity and afflnity determinants of family1 and family3 cellulose binding modules. Proc Natl Acad Sci USA,2003,100:484-489.

[9] Zverlov V V, Fuchs K P, W.H.Schwarz. Chi18A,the endochitinase in the cellulosome of the thermophilic, cellulolytic bacterium Clostridium thermocellum. Appl Environ Microbiol,2002,68:3176-3179.

[10] Shaw A J, Podkaminer K K, Desai S G, et al. Metabolic engineering of a thermophilic bacterium to produce ethanolat high yield . Proc Natl Acad Sci USA ,2008, 105 :13769-13774.

[11] Cho K M.,Yoo Y J, Kang H S. δ-integration of endo/exoglucanase and β-glucosidasegenes into the yeast chromosomes for direct conversion of cellulose to ethanol.Enzyme Microb Technol, 1999,25:23-30.

[12] Bayer E A, Morag E, Lamed R. The cellulosome—a treasure-trove for biotechnology.TrendsBiotechnol.1994,12:378-386.

[13] Fierobe H P, Mechaly A, Tardif C, et al.Designand production of active cellulosome chimeras. J Biol Chem,2001,276:21257-21261.

[14] Fierobe H P, Bayer E A, Tardif C, et al.Degradation of cellulose substrates by cellulosome chimeras. J Biol Chem,2002,277:49621-49630.

[15] Fujita Y, Takahashi S, Ueda M,et al. Direct and ef?cient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes.Appl Environ Microbiol,2002,68:5136-5141.

[16] Fujita Y,Ito J,Ueda M, et al.Synergistic sacchari?cation,and direct fermentation to ethanol,of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microb,2004,70:1207-1212.

[17] Tsai S L,Oh J, Singh S,et al. Functional assembly of minicellulosomes on the saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl Environ Microbiol,2009,75: 6087-6093.

[18] Den Haan R,Rose S H,Lynd R, et al. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng,2007,9:87-94.

[19] Katahira S, Fujita Y, Mizuike A, et al.Construction of axylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells.Appl Environ Microbiol,2004,70:5407-5414.

[20] Sabathe F, Belaich A, Soucaille A. Characterization of the cellulolytic complex (cellulosome) of Clostridiuma cetobutylicum.FEMS Microbiol Lett, 2002,217:15-22.

[21] Sabathe F,Soucaille P.Characterization of the CipA scaffolding proteinand in vivo production of a minicellulosome in Clostridium acetobutylicum. J Bacteriol, 185:1092-1096.

[22] Perret S,Casalot L,Fierobe H P,et al. Production of heterologous and chimeric scaffoldins by Clostridiuma cetobutylicum ATCC824.J Bacteriol,2004,186:253-257.

[23] Mingardon F,Perret S,Belaich A, et al. Heterologous production,assembly,and secretion of a minicellulosome by Clostridium acetobutylicum ATCC824. Appl Environ Microb,2005,71:1215-1222.

[24] Demain A L,Newcomb M, Wu J H. Cellulase, clostridia, and ethanol . Microbiol Mol Biol Rev,2005, 69 :124-154.

[25] Brener D, Johnson B F. Relationship between substrate concentration and fermentation product ratios in Clostridium thermocellum cultures. Appl Environ Microbiol,1984,47:1126-1129.

[26] Lamed R, Kenig R, Morgenstern E, et al. Efficient cellulose solubilisation by a combined cellulosome- β -glucosidase system. Appl Biochem Biotechnol,1990,27:173-183.

[27] Klapatch T R, Demain A L, Lynd L R. Restriction endonuclease activity in Clostridium thermocellum and Clostridium thermosaccharolyticum. Appl Microbiol Biotechnol,1996;45:127-131.

[28] Tyurin M V, Desai S G, Lynd L R. Electrotransformation of Clostridium thermocellum. Appl Environ Microbiol,2004,70:883-90.

[29] Mai V, Lorenz W W, Wiegel J. Transformation of Thermoanaerobacterium sp. strain JW/SL-YS485 with plasmid pIKM1 conferring kanamycin resistance. FEMS Microbiol Lett,1997,148:163-167.

[30] Heap J T, Pennington O J, Cartman S T, et al. The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods, 2007,70:452-464.

[1] CHEN Ying,LI Qian. Patent Analysis on the Development Trend of Industrial Application of Special Yeast[J]. China Biotechnology, 2021, 41(4): 91-99.
[2] ZHANG Zheng-yan,CHEN Yu,SONG Li-jie,SU Zheng-quan,ZHANG Hai-yan. Advances in the Application of Field Effect Transistor Biosensor in Biomedical Detection[J]. China Biotechnology, 2021, 41(10): 73-88.
[3] LU Zhong-teng,HU Gao-wei. Identification Methods of Novel Cell Penetrating Peptides and Application in Antitumor Therapy[J]. China Biotechnology, 2019, 39(12): 50-55.
[4] CHEN Xiu-xiu,WU Cheng-lin,ZHOU Li-jun. Research Progress in Preparation and Clinical Application of Therapeutic Human Antibodies[J]. China Biotechnology, 2019, 39(10): 90-96.
[5] Fang-xu WANG,Yu-ling CHEN,Du-yan GENG,Chuan-fang CHEN. Research Progress on Biomedical Applications of Magnetotactic Bacteria and the Biosynthetic Magnetosomes[J]. China Biotechnology, 2018, 38(9): 74-80.
[6] Hao QIU,Ming-shu WANG,An-chun CHENG. γPNA——A New Type of High Efficient Peptide Nucleic Acid[J]. China Biotechnology, 2018, 38(2): 75-81.
[7] XU Li, WANG Yue, YAO Chi-yuan, XU Ping. Trends and Development Bottleneck Analysis of Gene Editing Technology[J]. China Biotechnology, 2018, 38(12): 113-122.
[8] Jing WANG,Xin XU,Xue-yu WANG,Lun-guang YAO,Yun-chao KAN,Jun JI. Research Progress of Loop-Mediated Isothermal Amplification in Food Safety Testing[J]. China Biotechnology, 2018, 38(11): 84-91.
[9] WANG Xi, CHEN Xi-ming, PU Tong-liang. Progress on High Efficient Expression and Application of Lysostaphin[J]. China Biotechnology, 2017, 37(9): 118-125.
[10] JIAO Yang, LIU Heng, Talatibaike·Maimaitijuma, CAO Yong-ping. The Application of Graphene and Derivatives in Orthopedics[J]. China Biotechnology, 2017, 37(8): 78-83.
[11] ZHAO Zhi-guo, CUI Qiang, ZHAO Lin-li, WANG Hai-yan, LI Gang, LIU Lai-jun, AO Wei-hua, MA Cai-xia. Application Progress of the Technology of Droplet Digital PCR[J]. China Biotechnology, 2017, 37(6): 93-96.
[12] YAN Peng-cheng, ZHANGY Zhan-jiang, PEI Zhi-yong, FU Yan-ting, CHEN Yu-bao, LIU Tong. Design and Realization of Cloud Platform for Medicinal Plant Conservation[J]. China Biotechnology, 2017, 37(11): 37-44.
[13] LIU Yi-jie, XUE Yong-chang. The Research Progress of Flavonoids in Plants[J]. China Biotechnology, 2016, 36(9): 81-86.
[14] WANG Dian-liang, DU Juan. The Current Research and Development Status of Cell Drug[J]. China Biotechnology, 2016, 36(9): 126-133.
[15] MA Bo-yuan, ZHANG Guang-ming, WANG Hang-yao, XU Hong-zhang, PENG Meng, WANG Yuan-yuan. Research Progress on Application of Photosynthetic Microbial Mixed Culture[J]. China Biotechnology, 2016, 36(8): 113-122.