Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (2): 75-81    DOI: 10.13523/j.cb.20180211
Orginal Article     
γPNA——A New Type of High Efficient Peptide Nucleic Acid
Hao QIU,Ming-shu WANG,An-chun CHENG()
Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University Institute of Preventive Veterinary Medicine Sichuan Agricultural University Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
Download: HTML   PDF(641KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Peptide nucleic acid (PNA) is a synthetic analogue of DNA with the pseudopeptide backbone, which has the advantages of strong binding specificity with nucleic acid, high biological stability in tissues and cells and long half-life.By targeting DNA/RNA binding, PNA could inhibit the replication, transcription and translation of DNA/RNA.Chiral functional groups were introduced at gamma sites of the skeleton structure of PNA to form right-handed helical structures, which significantly improved the hybridization with targeting DNA/RNA, and this PNA derivative was called gamma PNA.The solubility, thermal stability and specificity of gamma PNA have been improved remarkably, and it has a good prospect in gene editing and probe detection. The structure, properties and research progress of gamma PNA are summarized, which provides theoretical basis and references for antisense PNA application.



Key wordsγPNA;      Gene regulation      Probe detection      Antisense application     
Received: 11 July 2017      Published: 21 March 2018
ZTFLH:  Q75  
Cite this article:

Hao QIU,Ming-shu WANG,An-chun CHENG. γPNA——A New Type of High Efficient Peptide Nucleic Acid. China Biotechnology, 2018, 38(2): 75-81.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180211     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I2/75

Fig.1 Molecular structure and helix structure of γPNA(a) γPNA (b) DNA (c) Right handed helix (d) Left handed helix
Fig.2 Structure of γPNA and DNA hybrid complexes(a) γPNA-DNA (b) γPNA-DNA2 (c) γPNA2·DNA-DNA (d) γPNA2-DNA2
Fig.3 Regulation of translation by γPNA
[1]   Nielsen P E, Egholm M, Berg R H , et al. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science, 1991,254(5037):1497-1500.
doi: 10.1126/science.1962210
[2]   Harris D M, Hata D J . Rapid identification of bacteria and Candida using PNA-FISH from blood and peritoneal fluid cultures: a retrospective clinical study. Annals of Clinical Microbiology and Antimicrobials, 2013,12(1):2.
doi: 10.1186/1476-0711-12-2 pmid: 3553016
[3]   Mondhe M, Chessher A, Goh S , et al. Species-selective killing of bacteria by antimicrobial peptide-PNAs. Plos One, 2014,9(2):e89082.
doi: 10.1371/journal.pone.0089082 pmid: 24558473
[4]   Rajasekaran P, Alexander J C, Seleem M N , et al. Peptide nucleic acids inhibit growth of Brucella suis in pure culture and in infected murine macrophages - International Journal of Antimicrobial Agents. International Journal of Antimicrobial Agents, 2013,41(4):358-362.
doi: 10.1016/j.ijantimicag.2012.11.017 pmid: 3834731
[5]   Ghosal A, Nielsen P E . Potent antibacterial antisense peptide-peptide nucleic acid conjugates against Pseudomonas aeruginosa. Nucleic Acid Ther, 2012,22(5):323-334.
[6]   Shiraishi T, Nielsen P E . Cellular delivery of peptide nucleic acid (PNA). Advanced Drug Delivery Reviews, 2014,55(2):267-280.
doi: 10.1007/978-1-62703-553-8_16 pmid: 24297361
[7]   Karkare S, Bhatnagar D . Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino. Applied Microbiology & Biotechnology, 2006,71(5):575-586.
doi: 10.1007/s00253-006-0434-2 pmid: 16683135
[8]   Dezhenkov A V, Tankevich M V, Nikolskaya E D , et al. Synthesis of anionic peptide nucleic acid oligomers including γ-carboxyethyl thymine monomers. Mendeleev Communications, 2015,25(1):47-48.
doi: 10.1016/j.mencom.2015.01.017
[9]   Cola C D, Manicardi A, Corradini R , et al. Carboxyalkyl peptoid PNAs: synthesis and hybridization properties. Tetrahedron, 2012,68(2):499-506.
doi: 10.1016/j.tet.2011.11.017
[10]   Sugiyama T, Imamura Y, Demizu Y , et al. β-PNA: Peptide nucleic acid (PNA) with a chiral center at the β-position of the PNA backbone. Bioorganic & Medicinal Chemistry Letters, 2011,21(24):7317-7320.
doi: 10.1016/j.bmcl.2011.10.017 pmid: 22050888
[11]   Jain D R, Anandi V L, Lahiri M , et al. Influence of pendant chiral C(γ)-(alkylideneamino/guanidino) cationic side-chains of PNA backbone on hybridization with complementary DNA/RNA and cell permeability. Journal of Organic Chemistry, 2014,79(20):9567-9577.
doi: 10.1021/jo501639m
[12]   Dragulescu-Andrasi A, Rapireddy S, Frezza B M , et al. A simple gamma-backbone modification preorganizes peptide nucleic acid into a helical structure. Journal of the American Chemical Society, 2006,128(31):10258-10267.
doi: 10.1021/ja0625576 pmid: 16881656
[13]   Crawford M J, Rapireddy S, Bahal R , et al. Effect of steric constraint at the γ-backbone position on the conformations and hybridization properties of PNAs. Journal of Nucleic Acids, 2011,2011(06):S173.
doi: 10.4061/2011/652702 pmid: 3138043
[14]   Sahu B, Chenna V, Lathrop K L , et al. Synthesis of conformationally preorganized and cell-permeable guanidine-based gamma-peptide nucleic acids (gammaGPNAs). Journal of Organic Chemistry, 2009,74(4):1509.
doi: 10.1021/jo802211n pmid: 19161276
[15]   Sugiyama T, Kittaka A . ChemInform abstract: chiral peptide nucleic acids with a substituent in the N-(2-aminoethyl)glycine backbone. Cheminform, 2012,18(1):287-310.
doi: 10.3390/molecules18010287 pmid: 23271467
[16]   Gaofei H, Srinivas R, Raman B , et al. Strand invasion of extended, mixed-sequence B-DNA by gammaPNAs. Journal of the American Chemical Society, 2009,131(131):12088-12090.
doi: 10.1021/ja900228j pmid: 19663424
[17]   Bahal R, Sahu B, Rapireddy S , et al. Sequence-unrestricted, Watson-Crick recognition of double helical B-DNA by ( R )-miniPEG-γPNAs. ChemBioChem, 2012,13(1):56-60.
doi: 10.1002/cbic.201100646 pmid: 22135012
[18]   Dutta S, Armitage B A, Lyubchenko Y L . Probing of miniPEGγ-PNA-DNA hybrid duplex stability with AFM force spectroscopy. Biochemistry, 2015,10(55):1523-1528.
doi: 10.1021/acs.biochem.5b01250 pmid: 26898903
[19]   Viéville J M, Barluenga S, Winssinger N , et al. Duplex formation and secondary structure of γ-PNA observed by NMR and CD. Biophysical Chemistry, 2015,210:9-13.
doi: 10.1016/j.bpc.2015.09.002
[20]   Rapireddy S, He G, Roy S , et al. Strand invasion of mixed-sequence B-DNA by acridine-linked, gamma-peptide nucleic acid (gamma-PNA). Journal of the American Chemical Society, 2013,129(50):15596-15600.
doi: 10.1021/ja074886j pmid: 18027941
[21]   Mitra R, Ganesh K N . Aminomethylene peptide nucleic acid (am-PNA): synthesis, Regio-/stereospecific DNA binding, and differential cell uptake of (α/γ,R/S)am-PNA analogues. Journal of Organic Chemistry, 2012,77(13):5696-5704.
doi: 10.1021/jo300860f
[22]   Goldman J M, Li A Z, Manna A , et al. High affinity γPNA sandwich hybridization assay for rapid detection of short nucleic acid targets with single mismatch discrimination. Biomacromolecules, 2013,14(7):2253-2261.
doi: 10.1021/bm400388a pmid: 23777445
[23]   Kaneti L, Bronshtein T, Malkah D N , et al. Nanoghosts as a novel natural nonviral gene delivery platform safely targeting multiple cancers. Nano Letters, 2016,16(3):1574-1582.
doi: 10.1021/acs.nanolett.5b04237 pmid: 26901695
[24]   Kulbacka J, Pucek A, Kotulska M , et al. Electroporation and lipid nanoparticles with cyanine IR-780 and flavonoids as efficient vectors to enhanced drug delivery in colon cancer. Bioelectrochemistry, 2016,110:19-31.
doi: 10.1016/j.bioelechem.2016.02.013 pmid: 26946158
[25]   Zhang X S, Huang J, Zhan C Q , et al. Different influences of lipofection and electrotransfection on in vitro gene delivery to primary cultured cortex neurons. Pain Physician, 2016,19(3):189-196.
pmid: 27008293
[26]   Sahu B, Sacui I, Rapireddy S , et al. Synthesis and characterization of conformationally preorganized, (R)-diethylene glycol-containing γ-peptide nucleic acids with superior hybridization properties and water solubility. Journal of Organic Chemistry, 2011,76(14):5614-5627.
doi: 10.1021/jo200482d
[27]   Kumar P, Jain D R . C γ -aminopropylene peptide nucleic acid ( amp -PNA): chiral cationic PNAs with superior PNA∶DNA/RNA duplex stability and cellular uptake. Tetrahedron, 2015,71(21):3378-3384.
doi: 10.1016/j.tet.2015.03.093
[28]   Kirillova Y, Boyarskaya N, Dezhenkov A , et al. Polyanionic carboxyethyl peptide nucleic acids (ce-PNAs): synthesis and DNA binding. Plos One, 2015,10(10):e140468.
doi: 10.1371/journal.pone.0140468 pmid: 26469337
[29]   Englund E A, Appella D H . Synthesis of gamma-substituted peptide nucleic acids: a new place to attach fluorophores without affecting DNA binding. Organic Letters, 2005,7(16):3465-3467.
doi: 10.1021/ol051143z pmid: 16048318
[30]   Costa N T, Heemstra J M . Differential DNA and RNA sequence discrimination by PNA having charged side chains. Bioorganic & Medicinal Chemistry Letters, 2014,24(10):2360-2363.
doi: 10.1016/j.bmcl.2014.03.059 pmid: 24731279
[31]   Iverson D, Serrano C, Brahan A M , et al. Characterization of the structural and protein recognition properties of hybrid PNA-DNA four-way junctions. Archives of Biochemistry & Biophysics, 2015,587:1-11.
doi: 10.1016/j.abb.2015.08.017 pmid: 26348651
[32]   Sahu B, Sacui I, Rapireddy S , et al. Synthesis and characterization of conformationally-preorganized, miniPEG-containing γPNAs with superior hybridization properties and water solubility. The Journal of Organic Chemistry, 2011,76(14):5614-5627.
doi: 10.1021/jo200482d
[33]   Bochman M L, Paeschke K, Zakian V A . DNA secondary structures: stability and function of G-quadruplex structures. Nature Reviews Genetics, 2012,13(11):770-780.
doi: 10.1038/nrg3296 pmid: 3725559
[34]   Kuhn H, Sahu B, Rapireddy S , et al. Sequence specificity at targeting double-stranded DNA with a gamma-PNA oligomer modified with guanidinium G-clamp nucleobases. Artificial Dna Pna & Xna, 2010,1(1):45-53.
doi: 10.4161/adna.1.1.12444 pmid: 21687526
[35]   Krupnik O V, Lazurkin Y S . PNA-DNA triplexes: stability and specificity. Genetika, 2005,41(7):869-883.
doi: 10.1007/s11177-005-0150-5 pmid: 16152791
[36]   Roy S, Zanotti K J, Murphy C T , et al. Kinetic discrimination in recognition of DNA quadruplex targets by guanine-rich heteroquadruplex-forming PNA probes. Chemical Communications. 2011,47(30):8524-8526.
doi: 10.1039/c1cc12805a pmid: 21717030
[37]   Turner J J, Ivanova G D, Verbeure B , et al. Cell-penetrating peptide conjugates of peptide nucleic acids (PNA) as inhibitors of HIV-1 Tat-dependent trans-activation in cells. Nucleic Acids Research, 2005,33(21):6837.
doi: 10.1093/nar/gki991 pmid: 1301599
[38]   Corradini R, Sforza S, Tedeschi T , et al. Peptide nucleic acids with a structurally biased backbone. Updated review and emerging challenges. Current Topics in Medicinal Chemistry, 2011,11(12):1535-1554.
doi: 10.2174/156802611795860979 pmid: 21510833
[39]   Canady T D, Telmer C A, Oyaghire S N , et al. In vitro reversible translation control using γPNA probes. Journal of the American Chemical Society, 2015,137(32):10268-10275.
doi: 10.1021/jacs.5b05351 pmid: 26241615
[40]   Smith P M, Ross G F, Wardell T M , et al. The use of PNAs and their derivatives in mitochondrial gene therapy. Letters in Peptide Science, 2003,10(3-4):353-360.
doi: 10.1007/s10989-004-4901-2
[41]   Muratovska A, Lightowlers R N, Taylor R W , et al. Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease. Nucleic Acids Research, 2001,29(9):1852-1863.
doi: 10.1093/nar/29.9.1852 pmid: 37250
[42]   Janowski B A, Kaihatsu K, Huffman K E , et al. Inhibiting transcription of chromosomal DNA with antigene peptide nucleic acids. Nature Chemical Biology, 2005,1(4):210-215.
doi: 10.1038/nchembio724 pmid: 16408037
[43]   Ivanova G D, Arzumanov A, Abes R , et al. Improved cell-penetrating peptide-PNA conjugates for splicing redirection in HeLa cells and exon skipping in mdx mouse muscle. Nucleic Acids Research, 2008,36(20):6418-6428.
doi: 10.1093/nar/gkn671 pmid: 2582604
[44]   Patenge N, Pappesch R, Krawack F , et al. Inhibition of growth and gene expression by PNA-peptide conjugates in Streptococcus pyogenes. Molecular Therapy - Nucleic Acids, 2013,2(11):e132.
doi: 10.1038/mtna.2013.62 pmid: 3889189
[45]   Torres A G, Fabani M M, Vigorito E , et al. Chemical structure requirements and cellular targeting of microRNA-122 by peptide nucleic acids anti-miRs. Nucleic Acids Research, 2012,40(5):2152-2167.
doi: 10.1093/nar/gkr885 pmid: 3300011
[46]   Mcneer N A, Chin J Y, Schleifman E B , et al. Nanoparticles deliver triplex-forming PNAs for site-specific genomic recombination in CD34 + human hematopoietic progenitors . Molecular Therapy, 2010,19(1):172-180.
doi: 10.1038/mt.2010.200 pmid: 20859257
[47]   Chin J Y, Glazer P M . Repair of DNA lesions associated with triplex-forming oligonucleotides. Molecular Carcinogenesis, 2009,48(4):389.
doi: 10.1002/mc.20501 pmid: 19072762
[48]   Mcneer N A, Schleifman E B, Cuthbert A , et al. Systemic delivery of triplex-forming PNA and donor DNA by nanoparticles mediates site-specific genome editing of human hematopoietic cells in vivo. Gene Therapy, 2013,20(6):658-669.
doi: 10.1038/gt.2012.82 pmid: 23076379
[49]   Bahal R, Quijano E, Mcneer N A , et al. Single-stranded γPNAs for in vivo site-specific genome editing via Watson-Crick recognition. Current Gene Therapy, 2014,14(5):331-342.
doi: 10.2174/1566523214666140825154158
[50]   Svasti S, Suwanmanee T, Fucharoen S , et al. RNA repair restores hemoglobin expression in IVS2-654 thalassemic mice. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(4):1205-1210.
doi: 10.1073/pnas.0812436106 pmid: 19164558
[51]   Chin J Y, Reza F, Glazer P M . Triplex-forming peptide nucleic acids induce heritable elevations in gamma-globin expression in hematopoietic progenitor cells. Molecular Therapy, 2013,21(3):580-587.
doi: 10.1038/mt.2012.262 pmid: 23337982
[52]   Wiesingermayr H, Vierlinger K, Pichler R , et al. Identification of human pathogens isolated from blood using microarray hybridisation and signal pattern recognition. BMC Microbiology, 2007,7(1):1-17.
doi: 10.1186/1471-2180-7-78 pmid: 1994958
[53]   Schleifman E B, Bindra R, Leif J , et al. Targeted disruption of the CCR5 gene in human hematopoietic stem cells stimulated by peptide nucleic acids. Chemistry & Biology, 2011,18(9):1189-1198.
doi: 10.1016/j.chembiol.2011.07.010 pmid: 21944757
[54]   J?rk N, Srinivas R, Amburg J I , et al. Duplex DNA-invading γ-modified peptide nucleic acids enable rapid identification of bloodstream infections in whole blood. Mbio, 2016,7(2):e316-345.
doi: 10.1128/mBio.00345-16 pmid: 27094328
[55]   Radic M, Goic-Barisic I, Novak A , et al. Evaluation of PNA FISH Yeast Traffic Light in identification of Candida species from blood and non-blood culture specimens. Medical Mycology, 2016,54(6):654-658.
doi: 10.1093/mmy/myw012
[56]   Koltai H, Weingarten-Baror C . Specificity of DNA microarray hybridization: characterization, effectors and approaches for data correction. Nucleic Acids Research, 2008,36(7):2395-2405.
doi: 10.1016/j.cma.2003.12.070 pmid: 18299281
[1] WANG Jia-wen, FENG Jing-xian, LIN Jun-sheng, DIAO Yong. The Artificial Aptazyme Based Riboswitch[J]. China Biotechnology, 2014, 34(2): 59-64.
[2] CHEN Wu, LI Ding-jun, DING Yan, ZHANG Xu, XIAO Qi-ming, ZHOU Qing-ming. Progress in the Resistance Mechanisms of Pathogenic Microorganism against Antimicrobial Peptide[J]. China Biotechnology, 2012, 32(05): 97-106.
[3] DONG Yuan-yuan, LI Hai-yan, LI Xiao-kun, YANG Shu-lin. Molecular Expression and Regulation of MicroRNA[J]. China Biotechnology, 2011, 31(12): 109-114.
[4] SHU Xian-Can, SONG Feng-Bin. Advances of Study on Arbuscular Mycorrhizal Symbiotic Phosphate Transporter in Plants[J]. China Biotechnology, 2009, 29(12): 108-113.
[5] . Construction and expression in vitro of RU486-inducible regulatory vector[J]. China Biotechnology, 2007, 27(6): 1-5.