Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (5): 96-104    DOI: 10.13523/j.cb.20190511
研究报告     
提高源自Bacillus circulans 251的β-CGTase对麦芽糖亲和性及其在生产海藻糖中的应用 *
杜立1,2,3,宿玲恰1,2,3,吴敬1,2,3,**()
1 江南大学食品科学与技术国家重点实验室 无锡 214122
2 江南大学生物工程学院 工业生物技术教育部重点实验室 无锡 214122
3 江南大学教育部食品安全国际合作联合实验室 无锡 214122
Enhancing Maltose Affinity of Bacillus circulans 251 β-CGTase and its Application in Trehalose Preparation
Li DU1,2,3,Ling-qia SU1,2,3,Jing WU1,2,3,**()
1 State Key Laboratory of Food Science and Technology, Jiangnan University,Wuxi 214122,China
2 School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, China
3 International Joint Laboratory on Food Safety,Jiangnan University,Wuxi 214122,China
 全文: PDF(1007 KB)   HTML
摘要:

B. circulans 251 β-CGTase应用于海藻糖制备,海藻糖转化率从50.4%提高至71.9%。为进一步提高底物的转化率,运用易错PCR-高通量筛选技术筛选对以麦芽糖为歧化反应受体的亲和性提高的B. circulans 251 β-CGTase突变体。利用低底物浓度的96孔板4,6-亚乙基-对硝基苯-α-D-麦芽七糖苷(EPS)显色法,最终筛选得到了一株对麦芽糖亲和性提高的突变体M234I。将野生型β-CGTase和突变体酶M234I进行蛋白质纯化,测定其酶学性质。结果表明,突变体的比活为345.25U/mg,野生型则为357.63U/mg;突变体M234I对麦芽糖的Km为0.258 2mmol/L,仅为野生型(0.474 9mmol/L)的54.4%,对麦芽糖的亲和性显著提高;突变体的最适温度、最适pH较野生型未发生较大变化。以麦芽糊精(DE值16)为底物,将突变体M234I用于多酶复配体系生产海藻糖,酶反应结果表明海藻糖的转化率最高达74.9%,较野生型β-CGTase提高约3%。

关键词: β-CGTase易错PCR分子改造亲和性海藻糖转化    
Abstract:

B. circulans 251 β-CGTase was applied to trehalose preparation, and the trehalose yield was increased from 50.4% to 71.9%. In order to further improve the conversion rate of substrates, B. circulans 251 β-CGTase mutants with improved affinity for maltose as a disproportionation acceptor were screened thorugh error-prone PCR and high-throughput screening. Mutant M234I with higher affinity for maltose was selected with a low concentration of 4,6-ethylidene-p-nitrophenyl-indole-D-maltoheptaose (EPS) chromogenic method. The wild-type β-CGTase and the mutant enzyme M234I were purified, and the enzymatic properties were characterized. The specific activity of the mutant M234I was 345.25U/mg (disproportionation activity), while that of the wild type was 357.63U/mg. The maltose Km vaule of the mutant M234I was 0.258 2mmol/L, which was only 54.4% of the wild type (0.474 9mmol/L), which indicates that its affinity for maltose was significantly improved. The optimum temperature and the optimum pH of the mutant did not change much compared with those of the wild type. The mutant M234I was used in the multi-enzyme complex system to produce trehalose with maltodextrin (DE 16) as substrate, the result showed that the trehalose yield was up to 74.9%, which was 3% higher than that of the wild-type β-CGTase.

Key words: β-CGTase    Error-prone PCR    Molecular modification    Affinity    Trehalose conversion
收稿日期: 2018-10-08 出版日期: 2019-06-04
ZTFLH:  Q819  
基金资助: * 国家自然科学基金资助项目(31771916);国家自然科学基金资助项目(31425020)
通讯作者: 吴敬     E-mail: jingwu@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杜立
宿玲恰
吴敬

引用本文:

杜立,宿玲恰,吴敬. 提高源自Bacillus circulans 251的β-CGTase对麦芽糖亲和性及其在生产海藻糖中的应用 *[J]. 中国生物工程杂志, 2019, 39(5): 96-104.

Li DU,Ling-qia SU,Jing WU. Enhancing Maltose Affinity of Bacillus circulans 251 β-CGTase and its Application in Trehalose Preparation. China Biotechnology, 2019, 39(5): 96-104.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190511        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I5/96

Mutant Mutated nucleotide bases Mutated amino acids
H-7 T624C /G702A/ C1110T M234I
表1  突变体测序结果
图1  野生型和突变体酶M234I的SDS-PAGE分析
Enzyme Purification steps Total
protein(mg)
Total
activity(U)
Specific
activity(U/mg)
Recovery
rate(%)
Purification
fold
M234I β-CGTase Crude extract 329.5 10 972.3 33.30 100.0 1.00
Salt precipitation 151.1 7 768.4 50.41 70.8 1.51
Mono Q 10/100 GL 2.8 966.7 345.25 12.4 10.37
Wild-type β-CGTase Crude extract 401.1 14 086.6 35.12 100.0 1.00
Salt precipitation 179.1 10 621.3 59.30 75.4 1.69
Mono Q 10/100 GL 8.6 3 075.6 357.63 28.9 10.05
表2  野生型和突变体M234I β-CGTase的纯化结果
Enzyme kcat
(/s)
Km
(mmol/L)
kcat/Km
[mmol/(L·s)]
Wild type 488.7 0.474 9 1 029.2
M234I 453.2 0.258 2 1 755.4
表3  野生型和突变体M234I β-CGTase的酶学动力学参数
图2  野生型和突变体M234I β-CGTase的最适温度
图3  野生型和突变体M234I β-CGTase的温度稳定性
图4  野生型和突变体M234I β-CGTase的最适pH
图5  野生型和突变体M234I β-CGTase的pH稳定性
图6  不同加酶量下的海藻糖转化率
Enzyme Glucose
(g/L)
Maltose
(g/L)
Trehalose
(g/L)
Wild type 18.1 28.1 138.3
M234I 19.2 23.5 142.6
表4  糖化前的反应体系中的葡萄糖、麦芽糖和海藻糖含量
图7  野生型与突变体M234I β-CGTase 动力学轨迹的平均结构,绿色表示野生型的loop区域和残基,蓝色表示突变体M234I的loop区域和残基
图8  野生型(a)与突变体M234I(b) β-CGTase 平均结构的受体底物对接模型
[1] 吴敬, 顾正彪, 陈坚 . 环糊精葡萄糖基转移酶的制备与应用. 北京: 化学工业出版社, 2011: 1-5.
Wu J, Gu Z B, Chen J. Preparation and application of cyclodextrin glycosyltransferase. Beijing: Chemical Industry Press, 2011: 1-5.
[2] Ba V D V, Leemhuis H, Kralj S , et al. Hydprophobic amino acid residues in the acceptor binding site are main determinants for reaction mechanism and specificity of cyclodextrin-glycosyltransferase. Journal of Biological Chemistry, 2001,276(48):44557-44562.
[3] Kelly R M, Dijkhuizen L, Leemhuis H . The evolution of cyclodextrin glucanotransferase product specificity. Applied Microbiology and Biotechnology, 2009,84(1):119-133.
[4] 李兆丰, 顾正彪, 堵国成 , 等. 环糊精葡萄糖基转移酶的结构特征与催化机理. 中国生物工程杂志, 2010,30(6):144-150.
Li Z F, Gu Z B, Du G C , et al. Structural characteristics and catalytic mechanisms of cyclodextrin glycosyltransferase. China Biotechnology, 2010,30(6):144-150.
[5] Brunei C, Lamare S, Legoy M D . Studies of specific cyclodextrin production starting from pure maltooligosaccharides using Thermoanaerobacter sp. cyclodextrin glycosyltransferase. Biocatalysis and Biotransformation, 1998,16(4):317-327.
[6] Jemli S, Messaoud E B, Ayadi-Zouari D , et al. A β-cyclodextrin glycosyltransferase from a newly isolated Paeni B pabuli US132 strain: purification, properties and potential use in bread-making. Biochemical Engineering Journal, 2007,34(1):44-50.
[7] Lee Y H, Baek S G, Shin H D , et al. Transglycosylation reaction of cyclodextrin glucanotransferase in the attrition coupled reaction system using raw starch as a donor. Korean Journal of Applied Microbiology & Biotechnology, 1993,6(27):801-815.
[8] 李才明 . β-环糊精葡萄糖基转移酶在枯草杆菌中的分泌表达及其热稳定性研究. 无锡: 江南大学, 2014.
Li C M . Secretory expression in Bacillus subtilis and thermostability of β-cyclodextrin glycosyltransferase. Wuxi: Jiangnan University, 2014.
[9] Plou F J, Martín M T, de Segura A G , et al. Glucosyltransferases acting on starch or sucrose for the synthesis of oligosaccharides. Canadian Journal of Chemistry, 2002,80(6):743-752.
[10] Marti N M T, Cruces M A, Alcalde M , et al. Synthesis of maltooligosyl fructofuranosides catalyzed by immobilized cyclodextrin glucosyltransferase using starch as donor. Tetrahedron, 2004,60(3):529-534.
[11] Mukai K, Tabuchi A, Nakada T , et al. Production of trehalose from starch by thermostable enzymes from Sulfolobus acidocaldarius. Starch-Stärke, 1997,49(1):26-30.
[12] van der Veen B A, Leemhuis H, Kralj S , et al. Hydrophobic amino acid residues in the acceptor binding site are main determinants for reaction mechanism and specificity of cyclodextrin-glycosyltransferase. Journal of Biological Chemistry, 2001,276(48):44557-44562.
[13] 杨玉路, 王蕾, 陈晟, 等 . 重组β-环糊精葡萄糖基转移酶生产 β-环糊精的工艺条件优化. 生物技术通报, 2014,8:175-181.
Yang Y L, Wang L, Chen S , et al. Optimization of β-cyclodextrin production by recombinant β-cyclodextrin glycosyltransferase. Biotechnology Bulletin, 2014,( 8):175-181.
[14] Bradford M M . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976,72(1-2):248-254.
[15] Uitdehaag J C, Mosi R, Kalk K H , et al. X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the alpha-amylase family. Nature Structural Biology, 1999,6(5):432.
[1] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[2] 陈方,徐刚,杨立荣,吴坚平. 定点突变提高醇脱氢酶LkTADH催化制备他汀关键手性砌块的酶活 *[J]. 中国生物工程杂志, 2018, 38(9): 59-64.
[3] 李继彬, 陈志, 陈华友. 腈水解酶克隆表达、固定化及分子改造的研究进展[J]. 中国生物工程杂志, 2017, 37(9): 141-147.
[4] 贺霖伟, 刘璋敏, 冯雁, 崔莉. 谷氨酸依赖型氨基转移酶的高通量筛选方法及其应用[J]. 中国生物工程杂志, 2017, 37(8): 59-65.
[5] 唐存多,史红玲,焦铸锦,刘飞,许建和,阚云超,姚伦广. CPC乙酰化酶底物结合区域Loop上脯氨酸对其催化特性的影响*[J]. 中国生物工程杂志, 2017, 37(12): 34-39.
[6] 马晨露, 唐存多, 史红玲, 王瑞, 岳超, 夏敏, 邬敏辰, 阚云超. 头孢菌素C乙酰化酶的半理性改造及7-ACA的生物合成[J]. 中国生物工程杂志, 2015, 35(12): 65-71.
[7] 唐存多, 史红玲, 唐青海, 焦铸锦, 阚云超, 邬敏辰, 李剑芳. 生物催化剂发现与改造的研究进展[J]. 中国生物工程杂志, 2014, 34(9): 113-121.
[8] 施碧红, 陈明, 翟妙仙, 严蕾, 陈文静. 基于易错PCR定向进化扩展青霉 Penicillium expansum FS1884碱性脂肪酶[J]. 中国生物工程杂志, 2011, 31(11): 64-68.
[9] 郜赵伟 张宇宏 张伟. 微生物酶分子改造研究进展[J]. 中国生物工程杂志, 2010, 30(01): 98-103.
[10] 袁宁,胡又佳,朱春宝,朱宝泉. 透明颤菌血红蛋白的DNA改组研究[J]. 中国生物工程杂志, 2006, 26(11): 14-19.
[11] 谢晚彬, 谢和芳. 蛋白质定向进化的研究技术及应用[J]. 中国生物工程杂志, 2005, 25(S1): 16-18.
[12] 赵亚华, 董竟南, 崔红, 白云, 金科华, 蒋智勇. 蜂毒素分子的改造及其基因在毕赤酵母中的表达[J]. 中国生物工程杂志, 2005, 25(02): 45-48,56.
[13] 解复红, 李文鹏, 张克勤. 耐碱和耐热木聚糖酶研究进展[J]. 中国生物工程杂志, 2003, 23(7): 72-75.
[14] 孙天霄, 徐长法. 溶栓剂的蛋白质工程[J]. 中国生物工程杂志, 1996, 16(2): 43-49.
[15] 薛勇彪, 孟金陵. 高等植物自交不亲和性的分子生物学[J]. 中国生物工程杂志, 1995, 15(1): 32-42.