Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (12): 111-118    DOI: 10.13523/j.cb.20171216
综述     
褐藻制备生物乙醇的生产优化研究 *
郗欣彤1,2,毛绍名1,2*()
1 中南林业科技大学林业生物技术湖南省重点实验室 长沙 410004
2 中南林业科技大学生命科学与技术学院 长沙 410004
Optimization of Bioethanol Production by Brown Algae
Xin-tong CHI1,2,Shao-ming MAO1,2*()
1 Forestry Biotechnology Hunan Key Laboratories,Changsha 410004,China
2 College of Life Sciences and Technology, Central South University of Forestry and Technology,Changsha 410004,China
 全文: PDF(429 KB)   HTML
摘要:

褐藻作为第三代生物乙醇生产原料,以其高碳水化合物含量、生产周期短、不与粮争地的优势逐渐被人们所关注。但是在生物乙醇的实际生产中,低成本基础上乙醇产率的提高一直是亟需解决的问题。主要针对褐藻制备生物乙醇的技术困难,综述了适用于大规模生产生物乙醇的预处理技术和糖化发酵技术的研究进展,并由此展望褐藻制备生物乙醇的研究发展新方向。

关键词: 生物乙醇褐藻褐藻胶酿酒酵母    
Abstract:

As the third-generation bioethanol feedstocks, brown algae have received attention because of advantages with high carbohydrate content, short production cycle and haven’t compete with grain for land. However, the improvement of ethanol yield on the basis of low cost is an urgent problem in the actual production of bioethanol. The technical difficulties of large-scale bioethanol production from brown algae were focused on, the research progress of the pretreatment technology and the saccharification and fermentation technology were reviewed, and the prospects of the new potential trend of brown algae bioethanol were also provided.

Key words: Bioethanol    Brown algae    Alginate    Saccharomyces cerevisiae
收稿日期: 2017-06-12 出版日期: 2017-12-16
ZTFLH:  Q819  
基金资助: 国家自然科学基金(31200074)、湖南省教育厅科研重点(15A198)资助项目
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郗欣彤
毛绍名

引用本文:

郗欣彤,毛绍名. 褐藻制备生物乙醇的生产优化研究 *[J]. 中国生物工程杂志, 2017, 37(12): 111-118.

Xin-tong CHI,Shao-ming MAO. Optimization of Bioethanol Production by Brown Algae. China Biotechnology, 2017, 37(12): 111-118.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20171216        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I12/111

藻类品种 预处理方式 还原糖
产率
发酵菌株 生物乙
醇产率
参考
文献
褐藻
Saccharina japonica(海带) 0.06%H2SO4, 170℃, 20min 29.10% Saccharomyces cerevisiae 6.65g/L [18]
Padina tetrastromatica(四叠团扇藻) 1% H2SO4,121℃, 45min 0.32g/g S.cerevisiae 0.66g/g [19]
Sargassum vulgare(普通马尾藻) 2% H2SO4,121℃, 45min 0.44g/g S.cerevisiae 0.38g/g [19]
Sargassum ilicifolium(冬青叶马尾藻) 1% H2SO4,121℃,海洋菌群处理15min 11.44g/L Meyerozyma guilliermondii 2.74g/L [35]
Ascophyllum nodosum (岩衣藻) 0.2mol/L H2SO4 , 121℃ , 20min. 50℃,150r/min搅拌酶解18h 15.45g/L Scheffersomyces(Pichia) stipitis 2.4 g/L [34]
Laminaria digitata(掌状昆布) 0.2mol/L H2SO4 , 121℃,20min. 50℃,150r/min搅拌18h酶解 29.3g/L Kluyveromyces marxianus 6.0 g/L [34]
红藻
Gracilaria corticata(江蓠) 1% H2SO4,121℃,海洋菌群处理15min 9.25g/L M.guilliermondii 1.72g/L [35]
Kappaphycus alvarezii(长心卡帕藻) 180mmol/L H2SO4 , 140℃,5min. 38.3g/L K.marxianus 16.0g/L [8]
绿藻
Ulva prolifera (浒苔) 0.2%H2O2, 50℃, pH=4,12h 0.42g/g S.cerevisiae 31.4% [9]
Ulva fasciata(石莼) 离子液处理24h.40℃, pH=4,酶解24h 112mg/g S.cerevisiae 0.47g/g [10]
表1  生产生物乙醇的不同藻类品种
[1] Nigam P S, Singh A . Production of liquid biofuels from renewable resources. Progress in Energy & Combustion Science, 2011,37(1):52-68.
doi: 10.1016/j.pecs.2010.01.003
[2] Kroger M, Muller-Langer F . Review on possible algal-biofuel production processes. Biofuels, 2012,3(3), 333-349.
doi: 10.4155/bfs.12.14
[3] John R P, Anisha G S, Nampoothiri K M , et al. Micro and macro algal biomass: a renewable source for bioethanol. Bioresource Technology, 2011,102(1):186-193.
doi: 10.1016/j.biortech.2010.06.139 pmid: 20663661
[4] Schmidt B J, Lin-Schmidt X, Chamberlin A , et al. Metabolic systems analysis to advance algal biotechnology. Biotechnology Journal, 2010,5(7):660-670.
doi: 10.1002/biot.201000129 pmid: 20665641
[5] Rebours C, Marinho-Soriano E, Zertuche-Gonzalez J A , et al. Seaweeds: an opportunity for wealth and sustainable livelihood for coastal communities. Journal of Applied Phycology, 2014,26(5):1939-1951.
doi: 10.1007/s10811-014-0304-8 pmid: 25346571
[6] Vassilev S V, Vassileva C G . Composition, properties and challenges of algae biomass for biofuel application: An overview. Fuel, 2016,181:1-33.
doi: 10.1016/j.fuel.2016.04.106
[7] Zhang W, Zhang J, Cui H , et al. The isolation and performance studies of an alginate degrading and ethanol producing strain. Chemical and Biochemical Engineering Quarterly, 2014,28(3):391-398.
doi: 10.15255/CABEQ.2013.1888
[8] Ra C H, Nguyen T H, Jeong G T , et al. Evaluation of hyper thermal acid hydrolysis of Kappaphycus alvarezii for enhanced bioethanol production. Bioresource Technology, 2016,209:66-72.
doi: 10.1016/j.biortech.2016.02.106 pmid: 26950757
[9] Li Y P, Cui J F, Zhang G L , et al. Optimization study on the hydrogen peroxide pretreatment and production of bioethanol from seaweed Ulva prolifera biomass. Bioresource Technology, 2016,214:144-149.
doi: 10.1016/j.biortech.2016.04.090 pmid: 27132221
[10] Trivedi N, Reddy C R, Radulovich R , et al. Solid state fermentation (SSF)-derived cellulase for saccharification of the green seaweed Ulva for bioethanol production. Algal Research-Biomass Biofuels and Bioproducts, 2015,9:48-54.
doi: 10.1016/j.algal.2015.02.025
[11] Abdallah Q A, Nixon B T, Fortwendel J R . The enzymatic conversion of major algal and cyanobacterial carbohydrates to bioethanol. Frontiers in Energy Research, 2016,4:36.
doi: 10.3389/fenrg.2016.00036
[12] Enquist-Newman M, Faust A M, Bravo D D , et al. Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature, 2014,505(7482):239-243.
doi: 10.1038/nature12771 pmid: 24291791
[13] Deniaud-Bouet E, Kervarec N, Michel G , et al. Chemical and enzymatic fractionation of cell walls from Fucales: insights into the structure of the extracellular matrix of brown algae. Annals of Botany, 2014,114(6):1203-1216.
doi: 10.1093/aob/mcu096 pmid: 24875633
[14] Lee K Y, Mooney D J . Alginate: properties and biomedical applications. Progress in Polymer Science, 2012,37(1):106-126.
doi: 10.1016/j.progpolymsci.2011.06.003 pmid: 22125349
[15] Wang D, Kim D H, Kim K H . Effective production of fermentable sugars from brown macroalgae biomass. Applied Microbiology & Biotechnology, 2016,100(22):9439-9450.
doi: 10.1007/s00253-016-7857-1 pmid: 27687993
[16] Fasahati P, Woo H C, Liu J J . Industrial-scale bioethanol production from brown algae: Effects of pretreatment processes on plant economics. Applied Energy, 2015,139:175-187.
doi: 10.1016/j.apenergy.2014.11.032
[17] Sirajunnisa A R, Surendhiran D . Algae — a quintessential and positive resource of bioethanol production: A comprehensive review. Renewable & Sustainable Energy Reviews, 2016,66:248-267.
doi: 10.1016/j.rser.2016.07.024
[18] Lee J Y, Li P, Lee J , et al. Ethanol production from Saccharina japonica using an optimized extremely low acid pretreatment followed by simultaneous saccharification and fermentation. Bioresource Technology, 2013,127:119-125.
doi: 10.1016/j.biortech.2012.09.122 pmid: 23131631
[19] Durbha S, Dev Tavva S, Guntuku G , et al. Ethanol production from the biomass of two marine algae, Padina tetrastromatica and Sargassum vulgare. American Journal of Biomass and Bioenergy, 2016,5(1):31-42.
[20] Ravanal M C, Pezoa-Conte R, von Schoultz S, , et al. Comparison of different types of pretreatment and enzymatic saccharification of Macrocystis pyrifera for the production of biofuel. Algal Research-Biomass Biofuels and Bioproducts, 2016,13:141-147.
[21] Wang D, Yun E J, Kim S , et al. Efficacy of acidic pretreatment for the saccharification and fermentation of alginate from brown macroalgae. Bioprocess and Biosystems Engineering, 2016,39(6):959-966.
doi: 10.1007/s00449-016-1575-z pmid: 26923145
[22] Sharma S, Horn S J . Enzymatic saccharification of brown seaweed for production of fermentable sugars. Bioresource Technology, 2016,213:155-161.
doi: 10.1016/j.biortech.2016.02.090 pmid: 26961713
[23] Manns D, Andersen S K, Saake B , et al. Brown seaweed processing: enzymatic saccharification of Laminaria digitata requires no pre-treatment. Journal of Applied Phycology, 2015,28(2):1287-1294.
doi: 10.1007/s10811-015-0663-9
[24] Mohapatra B R . Kinetic and thermodynamic properties of alginate lyase and cellulose coproduced by Exiguobacterium species Alg-S5. International Journal of Biological Macromolecules, 2017,98:103-110.
doi: 10.1016/j.ijbiomac.2017.01.091 pmid: 28122206
[25] Bak J S . Downstream optimization of fungal-based simultaneous saccharification and fermentation relevant to lignocellulosic ethanol production. SpringerPlus, 2015,4(1):47.
doi: 10.1186/s40064-015-0825-x pmid: 25713757
[26] Chung B Y, Lee J T, Bai H W , et al. Enhanced enzymatic hydrolysis of poplar bark by combined use of gamma ray and dilute acid for bioethanol production. Radiation Physics and Chemistry, 2012,81(8):1003-1007.
doi: 10.1016/j.radphyschem.2013.05.056
[27] Lee B M, Jeun J P, Kang P H , et al. Enhanced enzymatic hydrolysis of kenaf core using irradiation and dilute acid. Radiation Physics and Chemistry, 2017,130:216-220.
doi: 10.1016/j.radphyschem.2016.08.026
[28] Yuan Y, Macquarrie D J . Microwave assisted acid hydrolysis of brown seaweed Ascophyllum nodosum for bioethanol production and characterization of alga residue. ACS Sustainable Chemistry & Engineering, 2015,3(7):1359-1365.
doi: 10.1021/acssuschemeng.5b00094
[29] Yoon M, Choi J I, Lee J W , et al. Improvement of saccharification process for bioethanol production from Undaria sp. by gamma irradiation. Radiation Physics and Chemistry, 2012,81(8):999-1002.
doi: 10.1016/j.radphyschem.2011.11.035
[30] Hou X, Hansen J H, Bjerre A B . Integrated bioethanol and protein production from brown seaweed Laminaria digitata. Bioresource Technology, 2015,197:310-317.
doi: 10.1016/j.biortech.2015.08.091 pmid: 26342344
[31] Jelynne P, Tamayo , Del Rosario E J , Chemical analysis and utilization of Sargassum sp. as substrate for ethanol production. Energy Environ, 2014,5(2):202-208.
doi: 10.5829/idosi.ijee.2014.05.02.12
[32] Wei N, Quarterman J, Jin Y S , et al. Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends in Biotechnology, 2013,31(2):70-77.
doi: 10.1016/j.tibtech.2012.10.009 pmid: 23245657
[33] Song M Y, Pham H D, Seon J Y , et al. Marine brown algae: a conundrum answer for sustainable biofuels production. Renewable & Sustainable Energy Reviews, 2015,50:782-792.
doi: 10.1016/j.rser.2015.05.021
[34] Jung K A, Lim S R, Kim Y , et al. Potentials of macroalgae as feedstocks for biorefinery. Bioresource Technology, 2013,135:182-190.
doi: 10.1016/j.biortech.2012.10.025 pmid: 23186669
[35] Obata O, Akunna J, Bockhorn H , et al. Ethanol production from brown seaweed using non-conventional yeasts. Bioethanol, 2016,2(1):134-145.
doi: 10.1515/bioeth-2016-0010
[36] Sudhakar M P, Jegatheesan A, Poonam C , et al. Biosaccharification and ethanol production from spent seaweed biomass using marine bacteria and yeast. Renewable Energy, 2017,105:133-139.
doi: 10.1016/j.renene.2016.12.055
[37] Ji S Q, Wang B, Lu M , et al. Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila. Biotechnology for Biofuels, 2016,9(1):81.
doi: 10.1186/s13068-016-0494-1 pmid: 4818487
[38] Ji S Q, Wang B, Lu M , et al. Defluviitalea phaphyphila sp nov., a novel thermophilic bacterium that degrades brown algae. Applied and Environmental Microbiology, 2016,82(3):868-877.
doi: 10.1128/AEM.03297-15 pmid: 4725288
[39] Costa D A, De Souza C J, Costa P S, , et al. Physiological characterization of thermotolerant yeast for cellulosic ethanol production. Applied Microbiology and Biotechnology, 2014,98(8):3829-3840.
doi: 10.1007/s00253-014-5580-3 pmid: 24535257
[40] Castro R C A, Roberto I C . Selection of a thermotolerant Kluyveromyces marxianus strain with potential application for cellulosic ethanol production by simultaneous saccharification and fermentation. Applied Biochemistry and Biotechnology, 2014,172(3):1553-1564.
doi: 10.1007/s12010-013-0612-5 pmid: 24222495
[41] Kawai S, Murata K . Biofuel production based on carbohydrates from both brown and red macroalgae: recent developments in key biotechnologies. International Journal of Molecular Sciences, 2016,17(2):145.
doi: 10.3390/ijms17020145 pmid: 4783879
[42] Wargacki A J, Leonard E, Win M N , et al. An engineered microbial platform for direct biofuel production from brown macroalgae. Science, 2012,335(6066):308-313.
doi: 10.1126/science.1214547 pmid: 22267807
[43] Lee O K, Lee E Y . Sustainable production of bioethanol from renewable brown algae biomass. Biomass & Bioenergy, 2016,92:70-75.
doi: 10.1016/j.biombioe.2016.03.038
[44] Takagi T, Yokoi T, Shibata T , et al. Engineered yeast whole-cell biocatalyst for direct degradation of alginate from macroalgae and production of non-commercialized useful monosaccharide from alginate. Applied Microbiology and Biotechnology, 2015,100(4):1723-1732.
doi: 10.1007/s00253-015-7035-x pmid: 26490549
[45] Motone K, Takagi T, Sasaki Y , et al. Direct ethanol fermentation of the algal storage polysaccharide laminarin with an optimized combination of engineered yeasts. Journal of Biotechnology, 2016,231:129-135.
doi: 10.1016/j.jbiotec.2016.06.002 pmid: 27287535
[1] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[2] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.
[3] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[4] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[5] 章小毛,郭敬涵,洪解放,陆海燕,丁娟娟,邹少兰,范寰. UPRE-lac Z为报告基因评价酵母UPR响应初步研究 *[J]. 中国生物工程杂志, 2020, 40(10): 1-9.
[6] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.
[7] 陈春琳,秦松,宋宛霖,刘志丹,刘正一. 褐藻寡糖生物法制备研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 85-95.
[8] 张正坦,朱婧,谢志平. 酿酒酵母全基因组SNARE蛋白的亚细胞定位研究 *[J]. 中国生物工程杂志, 2019, 39(10): 44-57.
[9] 陆海燕,李佳蔓,孙思凡,章小毛,丁娟娟,邹少兰. CRISPR - Cas9系统介导的工业酵母营养缺陷型菌株构建 *[J]. 中国生物工程杂志, 2019, 39(10): 67-74.
[10] 黄俊,吴仁智,陆琦,芦志龙. 酿酒酵母木糖转运基因研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 109-115.
[11] 张伟, 刘夺, 李炳志, 元英进. 产对香豆酸酿酒酵母菌株的构建及优化[J]. 中国生物工程杂志, 2017, 37(9): 89-97.
[12] 李博, 梁楠, 刘夺, 刘宏, 王颖, 肖文海, 姚明东, 元英进. 合成8二甲基异戊烯基柚皮素的人工酿酒酵母菌株构建[J]. 中国生物工程杂志, 2017, 37(9): 71-81.
[13] 张璟, 张文强, 秦慧民, 毛淑红, 薛家禄, 路福平. 胆固醇7,8位脱氢酶的表达及催化活性研究[J]. 中国生物工程杂志, 2017, 37(1): 21-26.
[14] 梅雪昂, 陈艳, 王瑞钊, 肖文海, 王颖, 李霞, 元英进. 产玉米黄质的人工酵母细胞的构建[J]. 中国生物工程杂志, 2016, 36(8): 64-72.
[15] 王瑞钊, 潘才惠, 王颖, 肖文海, 元英进. 高产β-胡萝卜素酿酒酵母菌株的设计与构建[J]. 中国生物工程杂志, 2016, 36(7): 83-91.