Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (12): 103-110    DOI: 10.13523/j.cb.20171215
综述     
嗜酸菌耐酸pH平衡机制及潜在应用 *
张月明,乔建军()
天津大学化工学院制药工程系 系统生物工程教育部重点实验室 天津化学化工协同创新中心合成生物学平台 天津 300072
Mechanism of Acid Tolerance in Acidophiles with pH Homeostasis and Its Potential Applications
Yue-ming ZHANG,Jian-jun QIAO()
Syn Bio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
 全文: PDF(641 KB)   HTML
摘要:

嗜酸菌是一类可以在极端酸性环境下生存的微生物,在生物整治以及耐热耐酸酶的提取等领域发挥着重要作用。一些嗜中性工程菌株在发酵过程中经常遇到自身环境酸化的问题,嗜酸菌独特的耐酸能力及其耐酸模块为构建耐酸能力强的嗜中性工程菌株提供了思路。因此,从细胞膜的稳定性及低渗透性,耐酸相关的能量代谢,生物大分子的修复以及胞内缓冲作用等方面对嗜酸菌的耐酸机制进行深入探讨,并展望了嗜酸菌在耐酸工程菌株合成生物学领域的作用。

关键词: 嗜酸菌耐酸模块pH平衡机制合成生物学    
Abstract:

Acidophiles can survive in the extremely acidic environment and are most widely distributed in the bacterial and archaeal domains. They play an important role in the bioremediation and source of thermostable and acid-tolerant enzyme. Some neutral engineering strains often encountered the problem of acidification in the process of fermentation. Considering unique acid-tolerant ability of the acidophiles, if the acid-tolerant module from the acidophiles can get and applied to the neutral engineering strains, perhaps the acid-tolerant engineering strains could be built. Therefore, the common mechanisms for acid tolerance in acidophiles, including cell membrane stability and low permeability, energetic metabolism with acid tolerance, repair or protection of macromolecules and cytoplasmic buffering were overviewed, with a view to make some contributions for synthetic biology of acid-tolerant engineering strains.

Key words: Acidophiles    Acid-tolerant module    pH homeostasis    Synthetic biology
收稿日期: 2017-08-25 出版日期: 2017-12-16
ZTFLH:  Q819  
基金资助: 国家自然科学基金资助项目(31570089)
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张月明
乔建军

引用本文:

张月明,乔建军. 嗜酸菌耐酸pH平衡机制及潜在应用 *[J]. 中国生物工程杂志, 2017, 37(12): 103-110.

Yue-ming ZHANG,Jian-jun QIAO. Mechanism of Acid Tolerance in Acidophiles with pH Homeostasis and Its Potential Applications. China Biotechnology, 2017, 37(12): 103-110.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20171215        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I12/103

图1  嗜酸菌耐酸pH平衡机制
[1] Sharma A, Kawarabayasi Y, Satyanarayana T . Acidophilic bacteria and archaea: acid stable biocatalysts and their potential applications. Extremophiles, 2012,16(1):1-19.
doi: 10.1007/s00792-011-0402-3 pmid: 22080280
[2] Dhakar K, Pandey A . Wide pH range tolerance in extremophiles: towards understanding an important phenomenon for future biotechnology. Applied Microbiology and Biotechnology, 2016,100(6):2499-2510.
doi: 10.1007/s00253-016-7285-2 pmid: 26780356
[3] Krulwich T A, Sachs G, Padan E . Molecular aspects of bacterial pH sensing and homeostasis. Nature Reviews Microbiology, 2011,9(5):330-343.
doi: 10.1038/nrmicro2549 pmid: 21464825
[4] 徐自祥, 郑平, 孙际宾 . 全细胞网络重建与细胞工厂设计. 生物化学与生物物理进展, 2014,41(2):105-114.
doi: 10.3724/SP.J.1206.2012.00530
Xu Z X, Zheng P, Sun J B . Reconstruction of whole cell network and design of cell factory. Progress in Biochemistry and Biophysics, 2014,41(2):105-114.
doi: 10.3724/SP.J.1206.2012.00530
[5] Nielsen A A, Der B S, Shin J , et al. Genetic circuit design automation. Science, 2016,352(6281):7341.
doi: 10.1126/science.aac7341
[6] Liu Y, Tang H, Lin Z , et al. Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnology Advances, 2015,33(7):1484-1492.
doi: 10.1016/j.biotechadv.2015.06.001 pmid: 26057689
[7] Lund P, Tramonti A, De Biase D . Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiology Reviews, 2014,38(6):1091-1125.
doi: 10.1111/1574-6976.12076 pmid: 24898062
[8] Pandey R, Vischer N O, Smelt J P , et al. Intracellular pH response to weak acid stress in individual vegetative Bacillus subtilis cells. Applied and Environmental Microbiology, 2016,82(21):6463-6471.
doi: 10.1128/AEM.00861-17 pmid: 27565617
[9] Feng S, Yang H, Wang W . System-level understanding of the potential acid-tolerance components of Acidithiobacillus thiooxidans ZJJN-3 under extreme acid stress. Extremophiles, 2015,19(5):1029-1039.
doi: 10.1007/s00792-015-0780-z pmid: 26264736
[10] Feyhl-Buska J, Chen Y, Jia C , et al. Influence of growth phase, pH, and temperature on the abundance and composition of tetraether lipids in the thermoacidophile Picrophilus torridus. Frontiers in Microbiology, 2016,7(62):1-5.
doi: 10.3389/fmicb.2016.01323 pmid: 5003844
[11] Sperelakis N . Cell Physiology Source Book: Essentials of Membrane Biophysics. Elsevier, 2012. 303-321.
[12] Villanueva L, Damste J S, Schouten S . A re-evaluation of the archaeal membrane lipid biosynthetic pathway. Nature Reviews. Microbiology, 2014,12(6):438.
doi: 10.1038/nrmicro3260 pmid: 24801941
[13] Siliakus M F, Oost J V, Kengen S W . Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles, 2017,21(4):1-20.
doi: 10.1007/s00792-016-0906-y pmid: 28013384
[14] Mangold S, Rao Jonna V, Dopson M . Response of Acidithiobacillus caldus toward suboptimal pH conditions. Extremophiles, 2013,17(4):689-696.
doi: 10.1007/s00792-013-0553-5 pmid: 23712908
[15] Oger P M, Cario A . Adaptation of the membrane in Archaea. Biophysical Chemistry, 2013,183(24):42.
doi: 10.1016/j.bpc.2013.06.020 pmid: 23915818
[16] Méndezgarcía C, Peláez A I, Mesa V , et al. Microbial diversity and metabolic networks in acid mine drainage habitats. Front Microbiol, 2015,6(475):475.
doi: 10.3389/fmicb.2015.00475 pmid: 26074887
[17] Shimada H, Nemoto N, Shida Y , et al. Effects of pH and temperature on the composition of polar lipids in Thermoplasma acidophilum HO-62. Journal of Bacteriology, 2008,190(15):5404-5411.
doi: 10.1128/JB.00415-08 pmid: 2493274
[18] Mykytczuk N C, Trevors J T, Ferroni G D , et al. Cytoplasmic membrane fluidity and fatty acid composition of Acidithiobacillus ferrooxidans in response to pH stress. Extremophiles, 2010,14(5):427-441.
doi: 10.1007/s00792-010-0319-2 pmid: 20582711
[19] Tyson G W, Chapman J, Hugenholtz P , et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature, 2004,428(6978):37-43.
doi: 10.1038/nature02340 pmid: 14961025
[20] Keffeler E C, Payne S, Blum P . The energetic cost of improved acid resistance. The FASEB Journal, 2016,30(1):838.
[21] Ferguson S J, Ingledew W J . Energetic problems faced by micro-organisms growing or surviving on parsimonious energy sources and at acidic pH: I. Acidithiobacillus ferrooxidans as a paradigm. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2008,1777(12):1471-1479.
doi: 10.1016/j.bbabio.2008.08.012 pmid: 18835548
[22] Acu?a L G, Cárdenas J P, Covarrubias P C , et al. Architecture and gene repertoire of the flexible genome of the extreme acidophile Acidithiobacillus caldus. PLoS One, 2013,8(11):e78237.
doi: 10.1371/journal.pone.0078237 pmid: 3826726
[23] Quatrini R, Lefimil C, Veloso F A , et al. Bioinformatic prediction and experimental verification of Fur-regulated genes in the extreme acidophile Acidithiobacillus ferrooxidans. Nucleic Acids Research, 2007,35(7):2153-2166.
doi: 10.1093/nar/gkm068 pmid: 1874648
[24] Fütterer O, Angelov A, Liesegang H , et al. Genome sequence of Picrophilus torridus and its implications for life around pH 0. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(24):9091-9096.
doi: 10.1073/pnas.0401356101 pmid: 15184674
[25] Buetti-Dinh A, Dethlefsen O, Friedman R , et al. Transcriptomic analysis reveals how a lack of potassium ions increases Sulfolobus acidocaldarius sensitivity to pH changes. Microbiology, 2016,162(8):1422-1434.
doi: 10.1099/mic.0.000314 pmid: 27230583
[26] 周丹丹, 于延庆, 吴昊 , 等. 分子伴侣HdeA与底物蛋白SurA作用机制的模拟研究. 生物化学与生物物理进展, 2017,44(3):242-252.
Zhou D D, Yu Y Q, Wu H , et al. Simulation study on the mechanism of molecular chaperone HdeA and SurA. Progress in Biochemistry and Biophysics, 2017,44(3):242-252.
[27] Golyshina O V, Tran H, Reva O N , et al. Metabolic and evolutionary patterns in the extremely acidophilic archaeon Ferroplasma acidiphilum Y(T). Scientific Reports, 2017,7(1):3682.
doi: 10.1038/s41598-017-03904-5 pmid: 5473848
[28] Ferrer M, Golyshina O V, Beloqui A , et al. The cellular machinery of Ferroplasma acidiphilum is iron-protein-dominated. Nature, 2007,445(7123):91-94.
doi: 10.1038/nature05362 pmid: 17203061
[29] Bhalla A, Bansal N, Kumar S , et al. Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresource Technology, 2013,128(1):751-759.
doi: 10.1016/j.biortech.2012.10.145 pmid: 23246299
[30] Slonczewski J L, Fujisawa M, Dopson M , et al. Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Advances in Microbial Physiology, 2009,55:1-80.
doi: 10.1016/S0065-2911(09)05501-5
[31] Ullrich S R, González C, Poehlein A , et al. Gene loss and horizontal gene transfer contributed to the genome evolution of the extreme acidophile “Ferrovum”. Frontiers in Microbiology, 2016,7(390):797.
doi: 10.3389/fmicb.2016.00797 pmid: 27303384
[32] Ullrich S R, Poehlein A, Tischler J S , et al. Genome analysis of the biotechnologically relevant acidophilic iron oxidising strain JA12 indicates phylogenetic and metabolic diversity within the novel genus “Ferrovum”. Plos One, 2016,11(1):1725-1735.
doi: 10.1371/journal.pone.0146832 pmid: 4725956
[33] Li X, Kappler U, Jiang G , et al. The ecology of acidophilic microorganisms in the corroding concrete sewer environment. Frontiers in Microbiology, 2017,8.
doi: 10.3389/fmicb.2017.00683 pmid: 5397505
[34] van Wolferen M, Ajon M, Driessen A J , et al. How hyperthermophiles adapt to change their lives: DNA exchange in extreme conditions. Extremophiles, 2013,17(4):545-563.
doi: 10.1007/s00792-013-0552-6 pmid: 23712907
[35] Prabha R, Singh D P, Gupta S K , et al. Comparative analysis to identify determinants of changing life style in Thermosynechococcus elongatus BP-1, a thermophilic cyanobacterium. Bioinformation, 2013,9(6):299.
doi: 10.6026/97320630009299 pmid: 3607189
[36] 郝小明, 陈博, 安泰 . 工业微生物酸胁迫的耐受机制及改造途径. 生物工程学报, 2015,31(8):1151-1161.
doi: 10.13345/j.cjb.140496
Hao X M, Chen B, An T . Pathway modification of industrial microorganisms to improve acid-stress tolerance. Chinese Journal of Biotechnology, 2015,31(8):1151-1161.
doi: 10.13345/j.cjb.140496
[37] Zhang B, Li A, Zuo F , et al. Recombinant Lactococcus lactis NZ9000 secretes a bioactive kisspeptin that inhibits proliferation and migration of human colon carcinoma HT-29 cells. Microbial Cell Factories, 2016,15(1):102-113.
doi: 10.1186/s12934-016-0506-7 pmid: 4901401
[38] Feng F, Hu P, Chen L , et al. Display of human proinsulin on the Bacillus subtilis spore surface for oral administration. Current Microbiology, 2013,67(1):1-8.
doi: 10.1007/s00284-013-0325-6 pmid: 23380802
[39] Zhang Y F, Liu S Y, Du Y H , et al. Genome shuffling of Lactococcus lactis subspecies lactis YF11 for improving nisin Z production and comparative analysis. Journal of Dairy Science, 2014,97(5):2528-2541.
doi: 10.3168/jds.2013-7238 pmid: 24612797
[40] Zhang J, Caiyin Q, Feng W , et al. Enhance nisin yield via improving acid-tolerant capability of Lactococcus lactis F44. Scientific Reports, 2016,6:27973.
doi: 10.1038/srep27973 pmid: 4910042
[41] Hao P, Liang D, Cao L , et al. Promoting acid resistance and nisin yield of Lactococcus lactis, F44 by genetically increasing D-Asp amidation level inside cell wall. Applied Microbiology & Biotechnology, 2017,101(15):6137-6153.
doi: 10.1007/s00253-017-8365-7 pmid: 28643181
[42] 赵秀丽, 周丹丹, 闫晓光 , 等. 细菌小RNA的调控及在代谢工程中的应用. 中国生物工程杂志, 2017,37(6):97-106.
Zhao X L, Zhou D D, Yan X G , et al. Regulation and application in metabolic engineering of bacterial small RNAs. China Biotechnology, 2017,37(6):97-106.
[43] Qi J, Caiyin Q, Wu H , et al. The novel sRNA s015 improves nisin yield by increasing acid tolerance of Lactococcus lactis F44. Applied Microbiology and Biotechnology, 2017,101(16):6483-6493.
doi: 10.1007/s00253-017-8399-x pmid: 28689267
[44] Wang B, Shao Y, Chen F . Overview on mechanisms of acetic acid resistance in acetic acid bacteria. World Journal of Microbiology and Biotechnology, 2015,31(2):255-263.
doi: 10.1007/s11274-015-1799-0 pmid: 25575804
[45] 夏凯, 朱军莉, 梁新乐 . 醋酸菌耐酸机理及其群体感应研究新进展. 微生物学报, 2017,57(3):321-332.
Xia K, Zhu J L, Liang X L . Advances in acid resistant mechanism of acetic acid bacteria and related quorum sensing system. Acta Microbiologica Sinica, 2017,57(3):321-332.
[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 黄焕邦,吴洋,杨友辉,王兆官,齐浩. 基于古菌酪氨酰tRNA合成酶非天然氨基酸插入的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 110-125.
[3] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[4] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[5] 郑义,郭世英,隋凤翔,杨骐羽,卫雅萱,李晓岩. 群体感应系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(11): 100-109.
[6] 察亚平, 朱牧孜, 李爽. 体内连续定向进化研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 42-51.
[7] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[8] 常璐, 黄娇芳, 董浩, 周斌辉, 朱小娟, 庄英萍. 合成生物学改造微生物及生物被膜用于重金属污染检测与修复 *[J]. 中国生物工程杂志, 2021, 41(1): 62-71.
[9] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[10] 张玉婷,李伟国,梁冬梅,乔建军,财音青格乐. P450s在萜类合成方面的合成生物学研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 84-96.
[11] 王震,李霞,元英进. 微生物异源合成咖啡酸及其酯类衍生物研究进展 *[J]. 中国生物工程杂志, 2020, 40(7): 91-99.
[12] 孙青,刘德华,陈振. 甲醇的生物利用与转化*[J]. 中国生物工程杂志, 2020, 40(10): 65-75.
[13] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.
[14] 谢华玲,李东巧,迟培娟,杨艳萍. 合成生物学领域专利竞争态势分析[J]. 中国生物工程杂志, 2019, 39(4): 114-123.
[15] 马雅婷,刘珍宁,刘雪,於洪建,赵广荣. 微生物异源合成植物异喹啉生物碱的新进展 *[J]. 中国生物工程杂志, 2019, 39(11): 123-131.