Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2024, Vol. 44 Issue (1): 107-117    DOI: 10.13523/j.cb.2306041
    
Advances in Quorum-sensing Bidirectional Interactions Between Phages and Bacteria
Shuyang SUN1,Shengbo WU1,2,Xinqiao ZHANG1,Changchang LIANG1,Jianjun QIAO1,2,3,4,***()
1 School of Chemical Engineering, Tianjin University, Tianjin 300072, China
2 Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
3 Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
4 Synthetic Biology Research Platform, Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
Download: HTML   PDF(1856KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

During the extensive co-evolutionary process, complex interactions have emerged between phages and bacterial hosts. Quorum sensing (QS) mechanisms play a prominent role in governing the interactions between phages and bacteria. This article begins by elucidating the exploitation of QS mechanisms by bacterial hosts, providing an overview of their consequential impacts on biofilm regulation, phage adsorption processes, and the modulation of the CRISPR-Cas system. Furthermore, the involvement of phages in QS mechanisms is expounded upon, encompassing a comprehensive survey of their role in phage lytic-lysogenic regulations and the suppression of QS mechanisms. Finally, this article presents a prospective investigation and explanation of phage QS mechanisms, aiming to provide a theoretical foundation for the application of QS mechanisms in the field of phage therapy and related areas.



Key wordsQuorum sensing      Phage-bacterial host      Lysogen-lysis      Microbial interaction     
Received: 02 July 2023      Published: 04 February 2024
ZTFLH:  Q939.48  
Cite this article:

Shuyang SUN, Shengbo WU, Xinqiao ZHANG, Changchang LIANG, Jianjun QIAO. Advances in Quorum-sensing Bidirectional Interactions Between Phages and Bacteria. China Biotechnology, 2024, 44(1): 107-117.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2306041     OR     https://manu60.magtech.com.cn/biotech/Y2024/V44/I1/107

Fig.1 Regulation of biofilm formation by bacteria via quorum sensing system[37]
Fig.2 Regulation of bacterial phage receptor sites via quorum sensing system
Fig.3 Regulation of CRISPR-Cas system by bacterial quorum sensing
Fig.4 Quorum sensing-mediated regulation of bacteriophage lysis-lysogeny switch
Fig.5 Bacteriophage-mediated inhibition of bacterial quorum sensing system
[1]   Hendrix R W, Smith M C, Burns R N, et al. Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(5): 2192-2197.
[2]   Hsu B B, Gibson T E, Yeliseyev V, et al. Dynamic modulation of the gut microbiota and metabolome by bacteriophages in a mouse model. Cell Host & Microbe, 2019, 25(6): 803-814, e5.
[3]   Sinha A, Li Y, Mirzaei M K, et al. Transplantation of bacteriophages from ulcerative colitis patients shifts the gut bacteriome and exacerbates the severity of DSS colitis. Microbiome, 2022, 10(1): 105.
doi: 10.1186/s40168-022-01275-2 pmid: 35799219
[4]   Mayneris-Perxachs J, Castells-Nobau A, Arnoriaga-Rodríguez M, et al. Caudovirales bacteriophages are associated with improved executive function and memory in flies, mice, and humans. Cell Host & Microbe, 2022, 30(3): 340-356, e8.
[5]   Wang X X, Kim Y, Ma Q, et al. Cryptic prophages help bacteria cope with adverse environments. Nature Communications, 2010, 1(1): 147.
doi: 10.1038/ncomms1146
[6]   Touchon M, Bernheim A, Rocha E P. Genetic and life-history traits associated with the distribution of prophages in bacteria. The ISME Journal, 2016, 10(11): 2744-2754.
doi: 10.1038/ismej.2016.47
[7]   Liang X L, Wagner R E, Li B X, et al. Quorum sensing signals alter in vitro soil virus abundance and bacterial community composition. Frontiers in Microbiology, 2020, 11: 1287.
doi: 10.3389/fmicb.2020.01287
[8]   Wu S B, Liu J H, Liu C J, et al. Quorum sensing for population-level control of bacteria and potential therapeutic applications. Cellular and Molecular Life Sciences, 2020, 77(7): 1319-1343.
doi: 10.1007/s00018-019-03326-8 pmid: 31612240
[9]   Padder S A, Prasad R, Shah A H. Quorum sensing: a less known mode of communication among fungi. Microbiological Research, 2018, 210: 51-58.
doi: S0944-5013(18)30036-3 pmid: 29625658
[10]   Bruce J B, Lion S, Buckling A, et al. Regulation of prophage induction and lysogenization by phage communication systems. Current Biology, 2021, 31(22): 5046-5051, e7.
doi: 10.1016/j.cub.2021.08.073
[11]   León-Félix J, Villicaña C. The impact of quorum sensing on the modulation of phage-host interactions. Journal of Bacteriology, 2021, 203(9): e00687-20.
[12]   Wang Y X, Dai J J, Wang X H, et al. Mechanisms of interactions between bacteria and bacteriophage mediate by quorum sensing systems. Applied Microbiology and Biotechnology, 2022, 106(7): 2299-2310.
doi: 10.1007/s00253-022-11866-6
[13]   Wang Q, Guan Z Y, Pei K, et al. Structural basis of the arbitrium peptide-AimR communication system in the phage lysis-lysogeny decision. Nature Microbiology, 2018, 3(11): 1266-1273.
doi: 10.1038/s41564-018-0239-y pmid: 30224798
[14]   Gallego del Sol F, Penadés J R, Marina A. Deciphering the molecular mechanism underpinning phage arbitrium communication systems. Molecular Cell, 2019, 74(1): 59-72, e3.
doi: S1097-2765(19)30045-0 pmid: 30745087
[15]   Pei K, Zhang J, Zou T T, et al. AimR adopts preexisting dimer conformations for specific target recognition in lysis-lysogeny deci-sions of Bacillus phage phi3T. Biomolecules, 2021, 11(9): 1321.
doi: 10.3390/biom11091321
[16]   Dou C, Xiong J, Gu Y J, et al. Structural and functional insights into the regulation of the lysis-lysogeny decision in viral communi-ties. Nature Microbiology, 2018, 3(11): 1285-1294.
doi: 10.1038/s41564-018-0259-7
[17]   张明阳, 任彪, 贾燕涛. 细菌与噬菌体相互抵抗机制研究进展. 微生物学通报, 2021, 48(9): 3293-3304.
[17]   Zhang M Y, Ren B, Jia Y T. Research progress on the mutual resistance mechanisms between bacteria and bacteriophages. Microbiology China, 2021, 48(9): 3293-3304.
[18]   Luthe T, Kever L, Thormann K, et al. Bacterial multicellular behavior in antiviral defense. Current Opinion in Microbiology, 2023, 74: 102314.
doi: 10.1016/j.mib.2023.102314
[19]   肖丽生, 祁芝珍, 宋亚军. 细菌的噬菌体感染耐受机制研究进展. 军事医学, 2016, 40(7): 606-609.
[19]   Xiao L S, Qi Z Z, Song Y J. Advances in research on bacterial resistance mechanisms against bacteriophages. Military Medical Sci-ences, 2016, 40(7): 606-609.
[20]   钟卓君, 饶贤才, 乐率. 细菌耐受噬菌体感染的分子机制研究进展. 微生物学通报, 2021, 48(9): 3249-3260.
[20]   Zhong Z J, Rao X C, Le S. Molecular mechanisms of bacterial resistance to bacteriophage infection: a review. Microbiology China, 2021, 48(9): 3249-3260.
[21]   Moreau P, Diggle S P, Friman V P. Bacterial cell-to-cell signaling promotes the evolution of resistance to parasitic bacteriophages. Ecology and Evolution, 2017, 7(6): 1936-1941.
doi: 10.1002/ece3.2818 pmid: 28331600
[22]   Hemmati F, Rezaee M A, Ebrahimzadeh S, et al. Novel strategies to combat bacterial biofilms. Molecular Biotechnology, 2021, 63(7): 569-586.
doi: 10.1007/s12033-021-00325-8
[23]   Zhao A L, Sun J Z, Liu Y P. Understanding bacterial biofilms: from definition to treatment strategies. Frontiers in Cellular and In-fection Microbiology, 2023, 13: 1137947.
[24]   Pires D P, Melo L D R, Azeredo J. Understanding the complex phage-host interactions in biofilm communities. Annual Review of Virology, 2021, 8(1): 73-94.
doi: 10.1146/annurev-virology-091919-074222 pmid: 34186004
[25]   Rostøl J T, Marraffini L. (Ph)ighting phages: how bacteria resist their parasites. Cell Host & Microbe, 2019, 25(2): 184-194.
[26]   Kim E S, Kim Y, Park Y, et al. Biological fixed film. Water Environment Research, 2018, 90(10): 900-927.
doi: 10.2175/106143018X15289915807074
[27]   Mari S, Vraneš J. Characteristics and significance of microbial biofilm formation. Periodicum Biologorum, 2007, 109(2): 115-121.
[28]   Tielker D, Hacker S, Loris R, et al. Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology, 2005, 151(5): 1313-1323.
doi: 10.1099/mic.0.27701-0
[29]   Passos da Silva D, Schofield M C, Parsek M R, et al. An update on the sociomicrobiology of quorum sensing in gram-negative biofilm development. Pathogens, 2017, 6(4): 51.
doi: 10.3390/pathogens6040051
[30]   Zhang B, Yu P F, Wang Z J, et al. Hormetic promotion of biofilm growth by polyvalent bacteriophages at low concentrations. Environmental Science & Technology, 2020, 54(19): 12358-12365.
doi: 10.1021/acs.est.0c03558
[31]   Tan D M, Hansen M F, de Carvalho L N, et al. High cell densities favor lysogeny: induction of an H 20 prophage is repressed by quorum sensing and enhances biofilm formation in Vibrio anguillarum. The ISME Journal, 2020, 14(7): 1731-1742.
doi: 10.1038/s41396-020-0641-3
[32]   Letarov A V, Kulikov E E. Adsorption of bacteriophages on bacterial cells. Biochemistry (Moscow), 2017, 82(13): 1632-1658.
doi: 10.1134/S0006297917130053
[33]   Ding Y F, Zhang D F, Zhao X M, et al. Autoinducer-2-mediated quorum-sensing system resists T 4 phage infection in Escherichia coli. Journal of Basic Microbiology, 2021, 61(12): 1113-1123.
doi: 10.1002/jobm.v61.12
[34]   Høyland-Kroghsbo N M, Mærkedahl R B, Svenningsen S. A quorum-sensing-induced bacteriophage defense mechanism. mBio, 2013, 4(1): e00362-12.
[35]   Xuan G H, Dou Q, Kong J N, et al. Pseudomonas aeruginosa resists phage infection via eavesdropping on indole signaling. Microbiology Spectrum, 2023, 11(1): e0391122.
doi: 10.1128/spectrum.03911-22
[36]   Lee J H, Wood T K, Lee J. Roles of indole as an interspecies and interKingdom signaling molecule. Trends in Microbiology, 2015, 23(11): 707-718.
doi: 10.1016/j.tim.2015.08.001
[37]   Perkel J M. Graphic content: picturing science. Nature, 2020, 582(7810): 137-138.
doi: 10.1038/d41586-020-01404-7
[38]   Xuan G H, Lin H, Tan L, et al. Quorum sensing promotes phage infection in Pseudomonas aeruginosa PAO1. mBio, 2022, 13(1): e03174-21.
[39]   邹秀月, 蔡德周. 噬菌体治疗细菌性疾病的研究进展及发展方向. 中国感染控制杂志, 2019, 18(9): 888-892.
[39]   Zou X Y, Cai D Z. Research progress and development direction of bacteriophage therapy for bacterial infection. Chinese Journal of Infection Control, 2019, 18(9):888-892.
[40]   王盛, 童贻刚. 噬菌体治疗研究进展. 微生物学通报, 2009, 36(7): 1019-1024.
[40]   Wang S, Tong Y G. Recent advance in bacteriophage therapy. Microbiology, 2009, 36(7): 1019-1024.
[41]   Medina-Aparicio L, Dávila S, Rebollar-Flores J E, et al. The CRISPR-Cas system in enterobacteriaceae. Pathogens and Disease, 2018, 76(1): fty002.
[42]   Amitai G, Sorek R. CRISPR-Cas adaptation: insights into the mechanism of action. Nature Reviews Microbiology, 2016, 14(2): 67-76.
doi: 10.1038/nrmicro.2015.14 pmid: 26751509
[43]   Jiang F G, Doudna J A. CRISPR-Cas9 structures and mechanisms. Annual Review of Biophysics, 2017, 46: 505-529.
doi: 10.1146/annurev-biophys-062215-010822 pmid: 28375731
[44]   Koonin E V, Makarova K S. Origins and evolution of CRISPR-Cas systems. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2019, 374(1772): 20180087.
[45]   Zakrzewska M, Burmistrz M. Mechanisms regulating the CRISPR-Cas systems. Frontiers in Microbiology, 2023, 14: 1060337.
doi: 10.3389/fmicb.2023.1060337
[46]   Hofer U. Quorum sensing controls the cost of CRISPR-Cas. Nature Reviews Microbiology, 2017, 15(1): 2-3.
[47]   Patterson A G, Jackson S A, Taylor C, et al. Quorum sensing controls adaptive immunity through the regulation of multiple CRISPR-Cas systems. Molecular Cell, 2016, 64(6): 1102-1108.
doi: S1097-2765(16)30720-1 pmid: 27867010
[48]   Fineran P C, Slater H, Everson L, et al. Biosynthesis of tripyrrole and β-lactam secondary metabolites in Serratia: integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production. Molecular Microbiology, 2005, 56(6): 1495-1517.
doi: 10.1111/j.1365-2958.2005.04660.x pmid: 15916601
[49]   Høyland-Kroghsbo N M, Paczkowski J, Mukherjee S, et al. Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(1): 131-135.
[50]   Lin P, Pu Q Q, Shen G W, et al. CdpR inhibits CRISPR-Cas adaptive immunity to lower anti-viral defense while avoiding self-reactivity. iScience, 2019, 13: 55-68.
doi: S2589-0042(19)30039-2 pmid: 30822746
[51]   Mion S, Plener L, Rémy B, et al. Lactonase SsoPox modulates CRISPR-Cas expression in gram-negative proteobacteria using AHL-based quorum sensing systems. Research in Microbiology, 2019, 170(6-7): 296-299.
doi: 10.1016/j.resmic.2019.06.004
[52]   Li Y, Tang Y Y, Li X F, et al. Quorum sensing inhibits type III-A CRISPR-Cas system activity through repressing positive regulators SarA and ArcR in Staphylococcus aureus. BioRxiv, 2023, DOI: 10.1101/2023.01.17.524377.
doi: 10.1101/2023.01.17.524377
[53]   Vale P F, Lafforgue G, Gatchitch F, et al. Costs of CRISPR-Cas-mediated resistance in Streptococcus thermophilus. Proceedings Biological Sciences, 2015, 282(1812): 20151270.
[54]   Duncan-Lowey B, Kranzusch P J. CBASS phage defense and evolution of antiviral nucleotide signaling. Current Opinion in Immunology, 2022, 74: 156-163.
doi: 10.1016/j.coi.2022.01.002 pmid: 35123147
[55]   Severin G B, Ramliden M S, Ford K C, et al. Activation of a Vibrio cholerae CBASS anti-phage system by quorum sensing and folate depletion. BioRxiv, 2023, DOI: 10.1101/2023.04.04.535582.
doi: 10.1101/2023.04.04.535582
[56]   O’Hara B J, Alam M, Ng W L. The Vibrio cholerae Seventh Pandemic Islands act in tandem to defend against a circulating phage. PLoS Genetics, 2022, 18(8): e1010250.
doi: 10.1371/journal.pgen.1010250
[57]   Qin X Y, Sun Q H, Yang B X, et al. Quorum sensing influences phage infection efficiency via affecting cell population and physio-logical state. Journal of Basic Microbiology, 2017, 57(2): 162-170.
doi: 10.1002/jobm.201600510
[58]   Nawel Z, Rima O, Amira B. An overview on Vibrio temperate phages: integration mechanisms, pathogenicity, and lysogeny regulation. Microbial Pathogenesis, 2022, 165: 105490.
doi: 10.1016/j.micpath.2022.105490
[59]   Brady A, Felipe-Ruiz A, Gallego Del Sol F, et al. Molecular basis of lysis-lysogeny decisions in gram-positive phages. Annual Review of Microbiology, 2021, 75(1): 563-581.
doi: 10.1146/micro.2021.75.issue-1
[60]   Mäntynen S, Laanto E, Oksanen H M, et al. Black box of phage-bacterium interactions: exploring alternative phage infection strategies. Open Biology, 2021, 11(9): 210188.
doi: 10.1098/rsob.210188
[61]   Howard-Varona C, Hargreaves K R, Abedon S T, et al. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. The ISME Journal, 2017, 11(7): 1511-1520.
doi: 10.1038/ismej.2017.16
[62]   Hu J, Ye H, Wang S L, et al. Prophage activation in the intestine: insights into functions and possible applications. Frontiers in Microbiology, 2021, 12: 785634.
doi: 10.3389/fmicb.2021.785634
[63]   Fortier L C, Sekulovic O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence, 2013, 4(5): 354-365.
doi: 10.4161/viru.24498
[64]   Maxwell K L. Phages tune in to host cell quorum sensing. Cell, 2019, 176(1-2): 7-8.
doi: S0092-8674(18)31590-3 pmid: 30633910
[65]   张莉萍, 甄向凯, 欧阳松应. 噬菌体群体感应系统及其分子机理研究进展. 微生物学通报, 2021, 48(9): 3261-3270.
[65]   Zhang L P, Zhen X K, Ouyang S Y. Research progress of phage quorum sensing system and its molecular mechanism. Microbiology China, 2021, 48(9): 3261-3270.
[66]   Silpe J E, Bridges A A, Huang X L, et al. Separating functions of the phage-encoded quorum-sensing-activated antirepressor qtip. Cell Host & Microbe, 2020, 27(4): 629-641, e4.
[67]   Silpe J E, Bassler B L. A host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision. Cell, 2019, 176(1-2): 268-280, e13.
doi: S0092-8674(18)31458-2 pmid: 30554875
[68]   Silpe J E, Bassler B L. Phage-encoded LuxR-type receptors responsive to host-produced bacterial quorum-sensing autoinducers. mBio, 2019, 10(2): e00638-19.
[69]   Laganenka L, Sander T, Lagonenko A, et al. Quorum sensing and metabolic state of the host control lysogeny-lysis switch of bacteriophage T1. mBio, 2019, 10(5): e01884-19.
[70]   Owen S V, Wenner N, Dulberger C L, et al. Prophages encode phage-defense systems with cognate self-immunity. Cell Host & Microbe, 2021, 29(11): 1620-1633, e8.
[71]   Erez Z, Steinberger-Levy I, Shamir M, et al. Communication between viruses guides lysis-lysogeny decisions. Nature, 2017, 541(7638): 488-493.
doi: 10.1038/nature21049
[72]   Stokar-Avihail A, Tal N, Erez Z, et al. Widespread utilization of peptide communication in phages infecting soil and pathogenic bacteria. Cell Host & Microbe, 2019, 25(5): 746-755, e5.
[73]   Bernard C, Li Y Y, Lopez P, et al. Beyond arbitrium: identification of a second communication system in Bacillus phage phi3T that may regulate host defense mechanisms. The ISME Journal, 2021, 15(2): 545-549.
doi: 10.1038/s41396-020-00795-9
[74]   Fernández L, Rodríguez A, García P. Phage or foe: an insight into the impact of viral predation on microbial communities. The ISME Journal, 2018, 12(5): 1171-1179.
doi: 10.1038/s41396-018-0049-5
[75]   Rutbeek N R, Rezasoltani H, Patel T R, et al. Molecular mechanism of quorum sensing inhibition in Streptococcus by the phage protein paratox. Journal of Biological Chemistry, 2021, 297(3): 100992.
doi: 10.1016/j.jbc.2021.100992
[76]   Mashburn-Warren L, Goodman S D, Federle M J, et al. The conserved mosaic prophage protein paratox inhibits the natural competence regulator ComR in Streptococcus. Scientific Reports, 2018, 8(1): 16535.
doi: 10.1038/s41598-018-34816-7 pmid: 30409983
[77]   Chatterjee A, Willett J L E, Nguyen U T, et al. Parallel genomics uncover novel enterococcal-bacteriophage interactions. mBio, 2020, 11(2): e03120-19.
[78]   Shah M, Taylor V L, Bona D E, et al. A phage-encoded anti-activator inhibits quorum sensing in Pseudomonas aeruginosa. Molecular Cell, 2021, 81(3): 571-583, e6.
doi: 10.1016/j.molcel.2020.12.011
[79]   Gutiérrez B, Domingo-Calap P. Phage therapy in gastrointestinal diseases. Microorganisms, 2020, 8(9): 1420.
doi: 10.3390/microorganisms8091420
[80]   Van Kessel J C, Mukherjee S. Another battle won in the phage-host arms race: Pseudomonas phage blocks quorum sensing regulator LasR. Molecular Cell, 2021, 81(3): 420-422.
doi: 10.1016/j.molcel.2021.01.007 pmid: 33545057
[81]   Petrov G, Dymova M, Richter V. Bacteriophage-mediated cancer gene therapy. International Journal of Molecular Sciences, 2022, 23(22): 14245.
doi: 10.3390/ijms232214245
[82]   Wu S B, Xu C Y, Liu J H, et al. Vertical and horizontal quorum-sensing-based multicellular communications. Trends in Microbiology, 2021, 29(12): 1130-1142.
doi: 10.1016/j.tim.2021.04.006 pmid: 34020859
[83]   Wu S B, Feng J, Liu C J, et al. Machine learning aided construction of the quorum sensing communication network for human gut microbiota. Nature Communications, 2022, 13(1): 3079.
doi: 10.1038/s41467-022-30741-6 pmid: 35654892
[84]   Wu S B, Yang S J, Wang M M, et al. Quorum sensing-based interactions among drugs, microbes, and diseases. Science China Life Sciences, 2023, 66(1): 137-151.
doi: 10.1007/s11427-021-2121-0
[85]   Wu S B, Qiao J J, Yang A D, et al. Potential of orthogonal and cross-talk quorum sensing for dynamic regulation in cocultivation. Chemical Engineering Journal, 2022, 445: 136720.
doi: 10.1016/j.cej.2022.136720
[86]   Wu S B, Xue Y T, Yang S J, et al. Combinational quorum sensing devices for dynamic control in cross-feeding cocultivation. Metabolic Engineering, 2021, 67: 186-197.
doi: 10.1016/j.ymben.2021.07.002 pmid: 34229080
[1] Qian WANG, Yixuan QIN, Qiang KONG, Huiyu LI, Kejin ZONG, Yinghui WANG, Minghui RONG. Research Progress of Microbial Quorum Sensing in Wastewater Biological Treatment[J]. China Biotechnology, 2024, 44(1): 118-127.
[2] HU Xiu-ling, XIONG Li-yang, WEI Yun-lin. Research Progresses on Quorum Sensing System Involved in Gram Positive Bacteria[J]. China Biotechnology, 2023, 43(2/3): 165-173.
[3] WANG Man-man,WU Sheng-bo,WU Hao,ZHANG Peng,ZHANG Yu-miao,QIAO Jian-jun,CAIYIN Qing-ge-le. Research Progress on Polyphenol-based Quorum Sensing Interfering[J]. China Biotechnology, 2022, 42(9): 93-104.
[4] JI Chuan-fu,WANG Lu,GOU Min,SONG Wen-feng,XIA Zi-yuan,TANG Yue-qin. The Review of Biosynthesis and Molecular Regulation of Xanthan Gum[J]. China Biotechnology, 2022, 42(1/2): 46-57.
[5] ZHENG Yi,GUO Shi-ying,SUI Feng-xiang,YANG Qi-yu,WEI Ya-xuan,LI Xiao-yan. Applications of Quorum Sensing Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(11): 100-109.
[6] DUAN Hai-rong,WEI Sai-jin,LI Xun-hang. Advances in Rhamnolipid Biosynthesis by Pseudomonas aeruginosa Research[J]. China Biotechnology, 2020, 40(9): 43-51.
[7] XUE Yan-ting,WU Sheng-bo,XU Cheng-yang,YUAN Bo-xin,YANG Shu-juan,LIU Jia-heng,QIAO Jian-jun,ZHU Hong-ji. Research Progress on the Quorum Sensing in the Dynamic Metabolic Regulation[J]. China Biotechnology, 2020, 40(6): 74-83.
[8] ZHAO Jing, QUAN Chun-shan. Progress in the Study of Microbial Signal Molecule Degradation Enzymes[J]. China Biotechnology, 2012, 32(12): 110-116.
[9] LIU Xiao-Di, DU Ning, GUO Li-Hong. Construction of streptococcus mutans comE mutant strain using In-frame deletion system[J]. China Biotechnology, 2009, 29(07): 80-86.
[10] . Research Progress in Accessory Gene Regulatory System of Staphylococcus aureus[J]. China Biotechnology, 2008, 28(6): 93-99.
[11] WANG Jian-Hua . Mechanism of signal transduction in baterial quorum sensing system and it’s effect on antibiotics production[J]. China Biotechnology, 2008, 28(4): 87-92.
[12] . Effect of Temperature and Carbon Source on the N-acyl-homoserine lactones Production by Food-derived Pseudomonas[J]. China Biotechnology, 2006, 26(08): 72-76.