Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2024, Vol. 44 Issue (1): 118-127    DOI: 10.13523/j.cb.2307024
    
Research Progress of Microbial Quorum Sensing in Wastewater Biological Treatment
Qian WANG1,2,**(),Yixuan QIN1,Qiang KONG1,2,Huiyu LI1,Kejin ZONG1,Yinghui WANG1,Minghui RONG1
1 School of Geography and Environment of Shandong Normal University, Jinan 250358, China
2 Dongying Research Institute of Shandong Normal University, Dongying 257343, China
Download: HTML   PDF(1575KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Quorum sensing(QS), known as the language of intercellular communication is a gene regulatory system that relies on colony density. It is found in many natural and wastewater treatment engineering systems and plays an important role in environmental remediation and wastewater biotreatment.At present,there is a lack of systematic summary of the research methods and related applications of QS regulating bacterial function.In this paper,the QS mechanism mediated by three types of typical signal molecules(N-Acyl homoserine 1actones,autoinducing peptides and furanosyl borate diEnvironmental Science & Technologyer)of bacteria was summarized.The three techniques of adding or quenching signal molecules,genetic manipulation of genes,and omics techniques to study the function of the QS system were reviewed,and their advantages and disadvantages were compared and analyzed.The application of QS in activated sludge,biofilm and biological nitrogen removal in the field of industrial wastewater biological treatment was discussed.Finally,combined with the current application potential of QS cross-border communication in wastewater treatment and the limitations of known research contents,some studies on QS system-mediated bacterial-plant,bacterial-phage,bacterial-fungal cross-border communication mechanisms were discussed,in order to provide new ideas for using QS regulation strategies to enhance wastewater treatment efficiency in the future.



Key wordsWastewater biological treatment      Bacteria      Quorum sensing      Signal molecule     
Received: 17 July 2023      Published: 04 February 2024
ZTFLH:  X703  
  Q939.9  
Cite this article:

Qian WANG, Yixuan QIN, Qiang KONG, Huiyu LI, Kejin ZONG, Yinghui WANG, Minghui RONG. Research Progress of Microbial Quorum Sensing in Wastewater Biological Treatment. China Biotechnology, 2024, 44(1): 118-127.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2307024     OR     https://manu60.magtech.com.cn/biotech/Y2024/V44/I1/118

Fig.1 Molecular structure of AHL
Fig.2 Typical AHL-QS system (A) and AIP-QS system (B)
Fig.3 QS system mediated by AI-1 and AI-2 in Vibrio harveyi The Q in the diagram indicates that the signal is transmitted through phosphorylation, and H and D represent histidine and aspartic acid, respectively, as phosphorylated residues of the signal transduction protein
应用领域 外源添加物名称 外源添加
物类型
QS的促
进(+)
/抑制
(-)
应用效果 参考文献
活性污泥 香草醛(vanillin) QSI - 香草醛减弱QS-AHL系统,延缓或抑制EPS中蛋白(PN)的产生,显著抑制丝状膨胀 [51]
C12-HSL、C14-HSL AHL + 抑制青霉菌菌丝体形成,缓解真菌性污泥膨胀,沉降能力分别提高了6.1%(C12-HSL)和39.7%(C14-HSL) [52]
C6-HSL AHL + 促进AGS快速粒化,提高AGS系统稳定性以及脱氮除磷性能 [55]
AGS中分离的
AHLs上清液
QS菌 + AGS沉降性能优异(SVI10 37.2 mL/g),加速成粒(颗粒完整性系数为4.4%) [56]
生物膜 C6-HSL、3OC12-HSL AHL + 提高BESs电子摄取量(1.3~2.0倍)和反硝化速率(大于1.0倍),加速阴极生物膜的形成和启动 [57]
D-酪氨酸 QSI - 减少22%生物附着量,抑制活性污泥生物膜污染 [58]
Rhodococcus sp. BH4 QQ菌 - 减少MFC阳极微生物EPS的产生,缓解膜污染,维持良好电化学活性(1 924 mW/m2) [59]
AcinetobacterComamonas
Stenotrophomonas
QQ菌 - 大幅缓解AnMBR膜污染,将膜过滤时间延长3.72倍(P≤ 0.05) [60]
酰化酶 QQ酶 - 生物膜的黏附强度至少降低37%,生物膜厚度由1 562 μm减少到1 765 μm [61]
生物脱氮 C12-HSL AHL + 明显强化好氧氨氧化过程,导致亚氮积累 [62]
C12-HSL AHL + 显著增加氧限制自养硝化/反硝化生物膜中的厌氧氨氧化速率(P< 0.05) [63]
C14-HSL、3-oxo-C14-HSL、
C6-HSL、3-oxo-C6-HSL
AHL + 处理16 d后,活性污泥氨氧化率提高了73% [64]
3-oxo-C6-HSL、
C6-HSL、C8-HSL
AHL + 显著提高SBR(P< 0.05)第二阶段运行期间的脱氮率(NRR) [50]
活化剂 + 刺激微生物自分泌AI-2,促进AOB并抑制NOB,造成N O 2 -累积,促进厌氧氨氧化,进而提高脱氮效率 [67]
蛭形轮虫 微型动物 + 分泌AHLs信号分子类似物,触发QS提高活性污泥对COD、氨氮、总磷的去除率 [68]
Table 1 Application of quorum sensing in wastewater biological treatment
[1]   Nealson K H, Platt T, Hastings J W. Cellular control of the synthesis and activity of the bacterial luminescent system. Journal of Bacteriology, 1970, 104(1): 313-322.
doi: 10.1128/jb.104.1.313-322.1970 pmid: 5473898
[2]   Whiteley M, Diggle S P, Greenberg E P. Progress in and promise of bacterial quorum sensing research. Nature, 2017, 551(7680): 313-320.
doi: 10.1038/nature24624
[3]   Welch M, Todd D E, Whitehead N A, et al. N-acyl homoserine lactone binding to the CarR receptor determines quorum-sensing specificity in Erwinia. The EMBO Journal, 2000, 19(4): 631-641.
doi: 10.1093/emboj/19.4.631
[4]   Whistler C A, Pierson L S 3rd. Repression of phenazine antibiotic production in Pseudomonas aureofaciens strain 30-84 by RpeA. Journal of Bacteriology, 2003, 185(13): 3718-3725.
doi: 10.1128/JB.185.13.3718-3725.2003 pmid: 12813064
[5]   Bodman S B V, Bauer W D, Coplin D L, et al. Quorum sensing in plant-pathogenic bacteria. Annual Review of Phy-topathology, 2003, 41(1): 455-482.
[6]   Zhu J, Mekalanos J J. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Developmental Cell, 2003, 5(4): 647-656.
doi: 10.1016/S1534-5807(03)00295-8
[7]   Williams P, Winzer K, Chan W C, et al. Look who’s talking: communication and quorum sensing in the bacterial world. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2007, 362(1483): 1119-1134.
[8]   Zhang Z X, Zheng Y L, Han P, et al. N-acyl-homoserine lactones (AHLs) in intertidal marsh: diversity and potential role in nitrogen cycling. Plant and Soil, 2020, 454(4): 103-119.
doi: 10.1007/s11104-020-04630-0
[9]   Panchavinin S, Tobino T, Hara-Yamamura H, et al. Candidates of quorum sensing bacteria in activated sludge associated with N-acyl homoserine lactones. Chemosphere, 2019, 236: 124292.
doi: 10.1016/j.chemosphere.2019.07.023
[10]   Ma H J, Wang X Z, Zhang Y, et al. The diversity, distribution and function of N-acyl-homoserine lactone (AHL) in industrial anaerobic granular sludge. Bioresource Technology, 2018, 247: 116-124.
doi: 10.1016/j.biortech.2017.09.043
[11]   Wang J F, Ding L L, Li K, et al. Estimation of spatial distribution of quorum sensing signaling in sequencing batch biofilm reactor (SBBR) biofilms. Science of the Total Environment, 2018, 612: 405-414.
doi: 10.1016/j.scitotenv.2017.07.277
[12]   Wang J F, Liu Q J, Hu H D, et al. Insight into mature biofilm quorum sensing in full-scale wastewater treatment plants. Chemosphere, 2019, 234: 310-317.
doi: S0045-6535(19)31227-5 pmid: 31228833
[13]   Wang N, Gao J, Liu Y, et al. Realizing the role of N-acyl-homoserine lactone-mediated quorum sensing in nitrification and denitrification: a review. Chemosphere, 2021, 274: 129970.
doi: 10.1016/j.chemosphere.2021.129970
[14]   Biswa P, Doble M. Production of acylated homoserine lactone by gram-positive bacteria isolated from marine water. FEMS Microbiology Letters, 2013, 343(1): 34-41.
doi: 10.1111/1574-6968.12123 pmid: 23489290
[15]   Zhang G S, Zhang F, Ding G, et al. Acyl homoserine lactone-based quorum sensing in a methanogenic archaeon. The ISME Journal, 2012, 6(7): 1336-1344.
doi: 10.1038/ismej.2011.203
[16]   Sharif D I, Gallon J, Smith C J, et al. Quorum sensing in Cyanobacteria: N-octanoyl-homoserine lactone release and response, by the epilithic colonial cyanobacterium Gloeothece PCC6909. The ISME Journal, 2008, 2(12): 1171-1182.
doi: 10.1038/ismej.2008.68
[17]   Miller M B, Bassler B L. Quorum sensing in bacteria. Annual Review of Microbiology, 2001, 55(1): 165-199.
doi: 10.1146/micro.2001.55.issue-1
[18]   Waters C M, Bassler B L. Quorum sensing: cell-to-cell communication in bacteria. Annual Review of Cell and Developmental Biology, 2005, 21: 319-346.
pmid: 16212498
[19]   Churchill M E A, Chen L L. Structural basis of acyl-homoserine lactone-dependent signaling. Chemical Reviews, 2011, 111(1): 68-85.
doi: 10.1021/cr1000817 pmid: 21125993
[20]   Wang X J, Wang W Q, Li Y, et al. Biofilm activity, ammonia removal and cell growth of the heterotrophic nitrifier, Acinetobacter sp., facilitated by exogenous N-acyl-homoserine lactones. RSC Advances, 2018, 8(54): 30783-30793.
doi: 10.1039/C8RA05545A
[21]   Ma H J, Wang X Z, Zhang Y, et al. The diversity, distribution and function of N-acyl-homoserine lactone (AHL) in industrial anaerobic granular sludge. Bioresource Technology, 2018, 247: 116-124.
doi: 10.1016/j.biortech.2017.09.043
[22]   Toyofuku M, Nomura N, Fujii T, et al. Quorum sensing regulates denitrification in Pseudomonas aeruginosa PAO1. Journal of Bacteriology, 2007, 189(13): 4969-4972.
doi: 10.1128/JB.00289-07
[23]   Cui X Y, Ruan X Y, Yin J, et al. Regulation of las and rhl quorum sensing on aerobic denitrification in Pseudomonas aeruginosa PAO1. Current Microbiology, 2021, 78(2): 659-667.
doi: 10.1007/s00284-020-02338-z
[24]   Shiner E K, Rumbaugh K P, Williams S C. InterKingdom signaling: deciphering the language of acyl homoserine lactones. FEMS Microbiology Reviews, 2005, 29(5): 935-947.
pmid: 16219513
[25]   Detmers F J M, Lanfermeijer F C, Poolman B. Peptides and ATP binding cassette peptide transporters. Research in Microbiology, 2001, 152(3-4): 245-258.
pmid: 11421272
[26]   Schauder S, Bassler B L. The languages of bacteria. Genes & Development, 2001, 15(12): 1468-1480.
doi: 10.1101/gad.899601
[27]   Tortosa P, Dubnau D. Competence for transformation: a matter of taste. Current Opinion in Microbiology, 1999, 2(6): 588-592.
pmid: 10607621
[28]   Cheng Q, Campbell E A, Naughton A M, et al. The com locus controls genetic transformation in Streptococcus pneumoniae. Molecular Microbiology, 1997, 23(4): 683-692.
pmid: 9157240
[29]   Kleerebezem M, Quadri L E N, Kuipers O P, et al. Quorum sensing by peptide pheromones and two-component sig-nal-transduction systems in Gram-positive bacteria. Molecular Microbiology, 1997, 24(5): 895-904.
pmid: 9219998
[30]   Xavier K B, Bassler B L. Interference with AI-2-mediated bacterial cell-cell communication. Nature, 2005, 437(7059): 750-753.
doi: 10.1038/nature03960
[31]   Miller S T, Xavier K B, Campagna S R, et al. Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Molecular Cell, 2004, 15(5): 677-687.
doi: 10.1016/j.molcel.2004.07.020
[32]   Thompson J A, Oliveira R A, Djukovic A, et al. Manipulation of the quorum sensing signal AI-2 affects the antibi-otic-treated gut microbiota. Cell Reports, 2015, 10(11): 1861-1871.
pmid: 25801025
[33]   Chen X, Schauder S, Potier N, et al. Structural identification of a bacterial quorum-sensing signal containing boron. Nature, 2002, 415(6871): 545-549.
doi: 10.1038/415545a
[34]   Zhang L, Li S Y, Liu X Z, et al. Sensing of autoinducer-2 by functionally distinct receptors in prokaryotes. Nature Communications, 2020, 11(1): 5371.
doi: 10.1038/s41467-020-19243-5 pmid: 33097715
[35]   Pereira C S, Thompson J A, Xavier K B. AI-2-mediated signalling in bacteria. FEMS Microbiology Reviews, 2013, 37(2): 156-181.
doi: 10.1111/j.1574-6976.2012.00345.x pmid: 22712853
[36]   Martinelli D, Bunk M, Cadalbert B. Language of bacteria. Wochenbl Papierfabr, 2002, 130(14):973-975.
[37]   Song T, Zhang X L, Li J, et al. A review of research progress of heterotrophic nitrification and aerobic denitrification microorganisms (HNADMs). The Science of the Total Environment, 2021, 801: 149319.
doi: 10.1016/j.scitotenv.2021.149319
[38]   Grandclément C, Tannières M, Moréra S, et al. Quorum quenching: role in nature and applied developments. FEMS Microbiology Reviews, 2016, 40(1): 86-116.
doi: 10.1093/femsre/fuv038 pmid: 26432822
[39]   肖梦圆, 武瑞赟, 谭春明, 等. 群体感应系统及其抑制剂对细菌生物被膜调控的研究进展. 食品科学, 2020, 41(13): 227-234.
doi: 10.7506/spkx1002-6630-20200109-115
[39]   Xiao M Y, Wu R Y, Tan C M, et al. Advances of quorum sensing system and quorum sensing inhibitors regulating bacterial biofilm formation. Food Science, 2020, 41(13): 227-234.
doi: 10.7506/spkx1002-6630-20200109-115
[40]   Parsek M R, Val D L, Hanzelka B L, et al. Acyl homoserine-lactone quorum-sensing signal generation. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(8): 4360-4365.
[41]   Gao M S, Chen H C, Eberhard A, et al. Effects of AiiA-mediated quorum quenching in Sinorhizobium meliloti on quorum-sensing signals, proteome patterns, and symbiotic interactions. Molecular Plant-microbe Interactions, 2007, 20(7): 843-856.
doi: 10.1094/MPMI-20-7-0843
[42]   Nguyen P D T, Mustapha N A, Kadokami K, et al. Quorum sensing between Gram-negative bacteria responsible for methane production in a complex waste sewage sludge consortium. Applied Microbiology and Biotechnology, 2019, 103(3): 1485-1495.
doi: 10.1007/s00253-018-9553-9 pmid: 30554390
[43]   Liang Y, Pan Y L, Li Q C, et al. RNA-seq-based transcriptomic analysis of AHL-induced biofilm and pyocyanin inhibition in Pseudomonas aeruginosa by Lactobacillus brevis. International Microbiology, 2022, 25(3): 447-456.
doi: 10.1007/s10123-021-00228-3 pmid: 35066679
[44]   Ganin H, Tang X, Meijler M M. Inhibition of Pseudomonas aeruginosa quorum sensing by AI-2 analogs. Bioorganic & Medicinal Chemistry Letters, 2009, 19(14): 3941-3944.
doi: 10.1016/j.bmcl.2009.03.163
[45]   Schuster M, Joseph Sexton D, Diggle S P, et al. Acyl-homoserine lactone quorum sensing: from evolution to applica-tion. Annual Review of Microbiology, 2013, 67: 43-63.
doi: 10.1146/annurev-micro-092412-155635 pmid: 23682605
[46]   Zhu Z Q, Yang Y, Fang A R, et al. Quorum sensing systems regulate heterotrophic nitrification-aerobic denitrification by changing the activity of nitrogen-cycling enzymes. Environmental Science and Ecotechnology, 2020, 2: 100026.
doi: 10.1016/j.ese.2020.100026
[47]   Gao J, Ma A Z, Zhuang X L, et al. An N-acyl homoserine lactone synthase in the ammonia-oxidizing bacterium Nitrosospira multiformis. Applied and Environmental Microbiology, 2014, 80(3): 951-958.
doi: 10.1128/AEM.03361-13
[48]   Wang Z B, Liu X L, Ni S Q, et al. Nano zero-valent iron improves anammox activity by promoting the activity of quorum sensing system. Water Research, 2021, 202: 117491.
doi: 10.1016/j.watres.2021.117491
[49]   Liu Y, Gao J, Wang N, et al. Diffusible signal factor enhances the saline-alkaline resistance and rhizosphere colonization of Stenotrophomonas rhizophila by coordinating optimal metabolism. Science of the Total Environment, 2022, 834: 155403.
doi: 10.1016/j.scitotenv.2022.155403
[50]   Tang X, Guo Y Z, Wu S S, et al. Metabolomics uncovers the regulatory pathway of acyl-homoserine lactones based quorum sensing in anammox consortia. Environmental Science & Technology, 2018, 52(4): 2206-2216.
doi: 10.1021/acs.est.7b05699
[51]   Shi H X, Wang J, Liu S Y, et al. New insight into filamentous sludge bulking: potential role of AHL-mediated quorum sensing in deteriorating sludge floc stability and structure. Water Research, 2022, 212: 118096.
doi: 10.1016/j.watres.2022.118096
[52]   Feng Z X, Lu X, Chen C L, et al. Transboundary intercellular communications between Penicillium and bacterial communities during sludge bulking: inspirations on quenching fungal dominance. Water Research, 2022, 221: 118829.
doi: 10.1016/j.watres.2022.118829
[53]   Mellbye B L, Giguere A T, Bottomley P J, et al. Quorum quenching of nitrobacter winogradskyi suggests that quorum sensing regulates fluxes of nitrogen oxide(s) during nitrification. mBIO, 2016, 7(5): e01753-16.
[54]   Wang H, Wu P K, Zheng D, et al. N-acyl-homoserine lactone (AHL)-mediated microalgal-bacterial communication driving Chlorella-activated sludge bacterial biofloc formation. Environmental Science & Technology, 2022, 56(17): 12645-12655.
doi: 10.1021/acs.est.2c00905
[55]   Shuai J, Hu X L, Wang B, et al. Response of aerobic sludge to AHL-mediated QS: granulation, simultaneous nitrogen and phosphorus removal performance. Chinese Chemical Letters, 2021, 32(11): 3402-3409.
doi: 10.1016/j.cclet.2021.04.061
[56]   Zhang B, Li W, Guo Y, et al. A sustainable strategy for effective regulation of aerobic granulation: augmentation of the signaling molecule content by cultivating AHL-producing strains. Water Research, 2020, 169: 115193.
doi: 10.1016/j.watres.2019.115193
[57]   Fang Y L, Deng C S, Chen J, et al. Accelerating the start-up of the cathodic biofilm by adding acyl-homoserine lactone signaling molecules. Bioresource Technology, 2018, 266: 548-554.
doi: S0960-8524(18)31024-1 pmid: 30049528
[58]   Xu H J, Liu Y. Reduced microbial attachment by D-amino acid-inhibited AI-2 and EPS production. Water Research, 2011, 45(17): 5796-5804.
doi: 10.1016/j.watres.2011.08.061 pmid: 21924452
[59]   Taᶊkan B N, Taᶊkan E. Inhibition of AHL-mediated quorum sensing to control biofilm thickness in microbial fuel cell by using Rhodococcus sp. BH4. Chemosphere, 2021, 285: 131538.
doi: 10.1016/j.chemosphere.2021.131538
[60]   Xu B Y, Cho Q A C, Ng T C A, et al. Enriched autoinducer-2 (AI-2)-based quorum quenching consortium in a ceramic anaerobic membrane bioreactor (AnMBR) for biofouling retardation. Water Research, 2022, 214: 118203.
doi: 10.1016/j.watres.2022.118203
[61]   Wang Y C, Wang C, Han M F, et al. Reduction of biofilm adhesion strength by adjusting the characteristics of biofilms through enzymatic quorum quenching. Chemosphere, 2022, 288: 132465.
doi: 10.1016/j.chemosphere.2021.132465
[62]   Zhang X J, Zhang H, Zhang N, et al. Impacts of exogenous quorum sensing signal molecule-acylated homoserine lactones (AHLs) with different addition modes on Anammox process. Bioresource Technology, 2023, 371: 128614.
doi: 10.1016/j.biortech.2023.128614
[63]   De Clippeleir H, Defoirdt T, Vanhaecke L, et al. Long-chain acylhomoserine lactones increase the anoxic ammonium oxidation rate in an OLAND biofilm. Applied Microbiology and Biotechnology, 2011, 90(4): 1511-1519.
doi: 10.1007/s00253-011-3177-7 pmid: 21360147
[64]   Gao J, Duan Y, Liu Y, et al. Long- and short-chain AHLs affect AOA and AOB microbial community composition and ammonia oxidation rate in activated sludge. Journal of Environmental Sciences, 2019, 78: 53-62.
doi: S1001-0742(18)31010-6 pmid: 30665656
[65]   Shen Q X, Gao J, Liu J, et al. A new acyl-homoserine lactone molecule generated by Nitrobacter winogradskyi. Sci-entific Reports, 2016, 6(1): 22903.
[66]   朱子倩. 群体感应系统调控异养硝化好氧反硝化机制研究. 哈尔滨: 哈尔滨工业大学, 2020.
[66]   Zhu Z Q. Mechanism of quorum sensing system regulating heterotrophic nitrification and aerobic denitrification. Harbin: Harbin Institute of Technology, 2020.
[67]   Hu H Z, Liu Y R, Luo F, et al. Stable and rapid partial nitrification achieved by boron stimulating autoinducer-2 me-diated quorum sensing at room & low temperature. Chemosphere, 2022, 304: 135327.
doi: 10.1016/j.chemosphere.2022.135327
[68]   丁国际, 张周翀, 何韵, 等. 旋轮虫在污水生物处理中的作用机制初探. 环境科学学报, 2019, 39(10): 3356-3363.
[68]   Ding G J, Zhang Z C, He Y, et al. Preliminary study on the function of Philodina sp. in biological wastewater treatment. Acta Scientiae Circumstantiae, 2019, 39(10): 3356-3363.
[69]   He C F, Zheng L, Ding J F, et al. Variation in bacterial community structures and functions as indicators of response to the restoration of Suaeda salsa: a case study of the restoration in the Beidaihe coastal wetland. Frontiers in Microbiology, 2022, 13: 783155.
doi: 10.3389/fmicb.2022.783155
[70]   夏蓉, 郑晓璇, 叶茂, 等. 噬菌体对土壤碳氮元素循环转化影响的研究进展. 土壤, 2021, 53(4): 661-671.
[70]   Xia R, Zheng X X, Ye M, et al. Advances in effects of bacteriophages on transformation of carbon and nitrogen in soil. Soils, 2021, 53(4): 661-671.
[71]   Ji M Z, Liu Z C, Sun K L, et al. Bacteriophages in water pollution control: advantages and limitations. Frontiers of Environmental Science & Engineering, 2020, 15(5): 84.
[72]   Feng Z, Lu X, Chen C, et al. Transboundary intercellular communications between Penicillium and bacterial commu-nities during sludge bulking: inspirations on quenching fungal dominance. Water Research, 2022, 221: 118829.
doi: 10.1016/j.watres.2022.118829
[1] Shuyang SUN, Shengbo WU, Xinqiao ZHANG, Changchang LIANG, Jianjun QIAO. Advances in Quorum-sensing Bidirectional Interactions Between Phages and Bacteria[J]. China Biotechnology, 2024, 44(1): 107-117.
[2] HU Xiu-ling, XIONG Li-yang, WEI Yun-lin. Research Progresses on Quorum Sensing System Involved in Gram Positive Bacteria[J]. China Biotechnology, 2023, 43(2/3): 165-173.
[3] MA Yi-fan, SUN Hui-li, MAO Shao-ming, LUAN Guo-dong, LV Xue-feng. Application of Evolutionary Engineering in Cyanobacterial Biology and Biotechnology Research[J]. China Biotechnology, 2023, 43(11): 92-104.
[4] ZHANG Ai-di, CUI Jin-yu, ZHANG Ya-ning, MAO Shao-ming, LUAN Guo-dong, LV Xue-feng. Research Progress and Prospects of Cyanobacterial Secondary Metabolite Scytonemin[J]. China Biotechnology, 2023, 43(10): 85-95.
[5] XIONG Li-yang, HU Xiu-ling, WEI Yun-lin. Advances in Non-antibiotic Therapy for Drug-resistant Bacteria[J]. China Biotechnology, 2023, 43(1): 50-58.
[6] WANG Man-man,WU Sheng-bo,WU Hao,ZHANG Peng,ZHANG Yu-miao,QIAO Jian-jun,CAIYIN Qing-ge-le. Research Progress on Polyphenol-based Quorum Sensing Interfering[J]. China Biotechnology, 2022, 42(9): 93-104.
[7] CHAI Yu-jie,FENG Jia,ZHOU Jian-ting,JIANG Jian-lan. Progress on Biological Treatment Technologies of Microcystins[J]. China Biotechnology, 2022, 42(8): 109-127.
[8] Xue-xia ZENG,Yu DAN,Shao-ming MAO,Jia-hui SUN,Guo-dong LUAN,Xue-feng LV. Research Progress on the Cyanobacterial Photosynthetic Production of Sugars Utilizing Carbon Dioxide[J]. China Biotechnology, 2022, 42(7): 90-100.
[9] MAO Lu-jia,SHI En-yu,WANG Han-ping,SHAN Tian-he,WANG Yin-song,WANG Yue. Research Progress of Bacterial Outer Membrane Vesicles in Anti-tumor Therapy[J]. China Biotechnology, 2022, 42(5): 100-105.
[10] WANG Ya-ling,CHENG An-chun,LIU Ma-feng. A Review on Structure and Functions of TonB-dependent Receptors in Gram-negative Bacteria[J]. China Biotechnology, 2022, 42(4): 93-101.
[11] ZHANG Qi, ZHANG Yi-xia, XUE Cai-li, ZHANG Hui, ZHANG Yun-peng, YANG Da-peng. Research Progress on Reuse of Biomass Resource of Oyster Shells[J]. China Biotechnology, 2022, 42(11): 126-139.
[12] LI Jin-hua,BAI Yu-fan,MA Chun-lan,JI Xiu-ling,WEI Yun-lin. Research Progress on Temperature Adaptation of Bacteriophage[J]. China Biotechnology, 2022, 42(1/2): 139-145.
[13] MA Chun-lan,LI Jin-hua,BAI Yu-fan,WEI Yun-lin. Advances in Bacterial Adaptive Evolution under Heavy Metal Ion Stress[J]. China Biotechnology, 2022, 42(1/2): 182-190.
[14] JI Chuan-fu,WANG Lu,GOU Min,SONG Wen-feng,XIA Zi-yuan,TANG Yue-qin. The Review of Biosynthesis and Molecular Regulation of Xanthan Gum[J]. China Biotechnology, 2022, 42(1/2): 46-57.
[15] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.