Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (2/3): 165-173    DOI: 10.13523/j.cb.2208031
    
Research Progresses on Quorum Sensing System Involved in Gram Positive Bacteria
HU Xiu-ling,XIONG Li-yang,WEI Yun-lin*()
Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
Download: HTML   PDF(1679KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Quorum sensing system was not just involved in interbacterial communication but also involved in communication between bacteria and their hosts. It has been demonstrated that the difference in quorum sensing system invoved in gram positive and gram negative bacteria was statistically significan. The quorum sensing system of positive bacteria has played important roles in many of the physiological characteristics such as pathogenicity, which was composed of oligopeptide signal molecules and receptor proteins. In this paper the current research status and advances in gene composition, signal molecular characteristics and regulation mechanisms of quorum sensing system involved in typical gram-positive bacteria, such as Bacillus cereus, Bacillus subtilis, Staphylococcus aureus and Streptococcus pneumoniae were summarized. The regulatory mechanisms of quorum sensing system invovled in important physiological activities of bacteria, such as nutrient absorption, biofilm formation, virulence factor production, spore production and cytidine production were illustrated. This study will provide a reference for the future research on quorum sensing of gram-positive bacteria.



Key wordsGram-positive bacteria      Quorum sensing system      Signal molecule      Gene regulation      Infection mechanism     
Received: 25 August 2022      Published: 31 March 2023
ZTFLH:  Q819  
Corresponding Authors: *Yun-lin WEI     E-mail: homework18@126.com
Cite this article:

HU Xiu-ling, XIONG Li-yang, WEI Yun-lin. Research Progresses on Quorum Sensing System Involved in Gram Positive Bacteria. China Biotechnology, 2023, 43(2/3): 165-173.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2208031     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I2/3/165

Fig.1 Three types of gene expression regulated by quorum sensing system (a) Gram-negative (b) Gram-positive (c) luxS/AI-2
Fig.2 The mechanisms of quorum sensing systems involved in gram-positive bacteria
菌株 信号分子 合酶 特定表型 参考文献
苏云金芽孢杆菌(Bacillus thuringiensis) PapR PapRb 胞外酶 [13]
NprX NprRBb,c 毒素、孢子形成 [14]
肺炎链球菌(Streptococcus pneumoniae) CSP ComCb 毒性、自溶 [15]
枯草芽孢杆菌(Bacillus subtilis) CSF RapC 孢子形成、生物膜形成 [16-17]
ComX信息素 ComP 菌体群集运动
植物乳杆菌(Lactobacillus plantarum) PLNC8IF 细菌素产生 [18]
蜡样芽胞杆菌(Bacillus cereus) PlcR PaPR 毒力因子表达 [19]
LuxS AI-2 生物膜产生
Rap-Phr RaP 孢子形成
金黄色葡萄球菌(Staphylococcus aureus) Agr 半胱氨酸蛋白酶 定植、毒力因子表达、生物膜形成 [20]
粪肠球菌(Enterococcus faecalis) 明胶酶生物合成激活
信息素(GBAP)
胞外蛋白酶(SprE) 毒力和蛋白酶产生 [21]
灰链霉菌(Streptomyces griseus) γ-丁内酯 次生代谢产物 [22]
艰难梭菌(Clostridium difficile) 4-OH-5-甲基-3(2)-H-呋喃 CdsB 毒素产生 [23]
单增李斯特菌(Listeria monocytogenes) AIP 毒力 [24]
Table 1 Quorum sensing system and related phenotypes of some gram-positive bacteria
Fig.3 The illustration demonstrates the PlcR-PaPR QS circuit in B. cereus
Fig. 4 The illustration demonstrates the ComQXPA QS circuit in B. subtilis
Fig.5 The illustration demonstrates the Agr QS circuit in S. aureus
Fig.6 The illustration demonstrates the ComABCDE QS circuit in S. pneumoniae
[1]   Guo M H, Fang Z J, Sun L J, et al. Regulation of thermostable direct hemolysin and biofilm formation of Vibrio parahaemolyticus by quorum-sensing genes luxM and luxS. Current Microbiology, 2018, 75(9): 1190-1197.
doi: 10.1007/s00284-018-1508-y
[2]   Hunt K, Butler F, Jordan K. Uncoupling ‘growth’ and ‘increasing cell numbers’ of Listeria monocytogenes in naturally contaminated milk from a sub-clinically infected cow. Food Control, 2017, 71: 228-233.
doi: 10.1016/j.foodcont.2016.07.002
[3]   Verdugo-Fuentes A, Gastélum G, Rocha J, et al. Multiple and overlapping functions of quorum sensing proteins for cell specialization in Bacillus species. Journal of Bacteriology, 2020, 202(10): e00721-e00719.
[4]   Basavaraju M, Sisnity V S, Palaparthy R, et al. Quorum quenching: signal jamming in dental plaque biofilms. Journal of Dental Sciences, 2016, 11(4): 349-352.
doi: 10.1016/j.jds.2016.02.002 pmid: 30894996
[5]   Banerjee G, Ray A K. The talking language in some major Gram-negative bacteria. Archives of Microbiology, 2016, 198(6): 489-499.
doi: 10.1007/s00203-016-1220-x pmid: 27062655
[6]   Ding Y F, Zhang D F, Zhao X M, et al. Autoinducer-2-mediated quorum-sensing system resists T 4 phage infection in Escherichia coli. Journal of Basic Microbiology, 2021, 61(12): 1113-1123.
doi: 10.1002/jobm.v61.12
[7]   Thomas S, Izard J, Walsh E, et al. The host microbiome regulates and maintains human health: a primer and perspective for non-microbiologists. Cancer Research, 2017, 77(8): 1783-1812.
doi: 10.1158/0008-5472.CAN-16-2929 pmid: 28292977
[8]   Andersson D, Hughes D, Kubicek-Sutherland J. Mechanisms and consequences of bacterial resistance to antimicrobial peptides[J]. Drug Resistance Updates, 2016, 26(4): 43-57.
doi: 10.1016/j.drup.2016.04.002
[9]   LaSarre B, Federle M J. Exploiting quorum sensing to confuse bacterial pathogens. Microbiology and Molecular Biology Reviews: MMBR, 2013, 77(1): 73-111.
doi: 10.1128/MMBR.00046-12
[10]   Mull R W, Harrington A, Sanchez L A, et al. Cyclic peptides that govern signal transduction pathways: from prokaryotes to multi-cellular organisms. Current Topics in Medicinal Chemistry, 2018, 18(7): 625-644.
doi: 10.2174/1568026618666180518090705 pmid: 29773060
[11]   Bikash C R, Hamry S R, Tal-Gan Y. Structure-activity relationships of the competence stimulating peptide in Streptococcus mutans reveal motifs critical for membrane protease SepM recognition and ComD receptor activation. ACS Infectious Diseases, 2018, 4(9): 1385-1394.
doi: 10.1021/acsinfecdis.8b00115
[12]   Stephens K, Bentley W E. Synthetic biology for manipulating quorum sensing in microbial consortia. Trends in Microbiology, 2020, 28(8): 633-643.
doi: S0966-842X(20)30080-9 pmid: 32340782
[13]   Cardoso P, Fazion F, Perchat S, et al. Rap-phr systems from plasmids pAW63 and pHT8-1 act together to regulate sporulation in the Bacillus thuringiensis serovar kurstaki HD73 strain. Applied and Environmental Microbiology, 2020, 86(18): e01238-e01220.
[14]   Dubois T, Faegri K, Gélis-Jeanvoine S, et al. Correction: necrotrophism is a quorum-sensing-regulated lifestyle in Bacillus thuringiensis. PLoS Pathogens, 2016, 12(11): e1006049.
doi: 10.1371/journal.ppat.1006049
[15]   Pundir P, Liu R, Vasavda C, et al. A connective tissue mast-cell-specific receptor detects bacterial quorum-sensing molecules and mediates antibacterial immunity. Cell Host & Microbe, 2019, 26(1): 114-122.e8.
[16]   Tal-Gan Y, Ivancic M, Cornilescu G, et al. Highly stable, amide-bridged autoinducing peptide analogues that strongly inhibit the AgrC quorum sensing receptor in Staphylococcus aureus. Angewandte Chemie (International Ed in English), 2016, 55(31): 8913-8917.
doi: 10.1002/anie.201602974
[17]   Špacapan M, Danevčič T, Štefanic P, et al. The ComX quorum sensing peptide of Bacillus subtilis affects biofilm formation negatively and sporulation positively. Microorganisms, 2020, 8(8): 1131.
doi: 10.3390/microorganisms8081131
[18]   Kareb O, Aïder M. Quorum sensing circuits in the communicating mechanisms of bacteria and its implication in the biosynthesis of bacteriocins by lactic acid bacteria: a review. Probiotics and Antimicrobial Proteins, 2020, 12(1): 5-17.
doi: 10.1007/s12602-019-09555-4 pmid: 31104210
[19]   Pomerantsev A P, Pomerantseva O M, Camp A S, et al. PapR peptide maturation: role of the NprB protease in Bacillus cereus 569 PlcR/PapR global gene regulation. FEMS Immunology & Medical Microbiology, 2009, 55(3): 361-377.
[20]   Mootz J M, Benson M A, Heim C E, et al. Rot is a key regulator of Staphylococcus aureus biofilm formation. Molecular Microbiology, 2015, 96(2): 388-404.
doi: 10.1111/mmi.12943 pmid: 25612137
[21]   Apriyanti E, Satari M H, Kurnia D. Potential of MurA enzyme and GBAP in fsr quorum sensing system as antibacterial drugs target: in vitro and in silico study of antibacterial compounds from Myrmecodia pendans. Combinatorial Chemistry & High Throughput Screening, 2021, 24(1): 109-118.
[22]   Polkade A V, Mantri S S, Patwekar U J, et al. Quorum sensing: an under-explored phenomenon in the Phylum Actinobacteria. Frontiers in Microbiology, 2016, 7: 131.
doi: 10.3389/fmicb.2016.00131 pmid: 26904007
[23]   Morris K A, Macfarlane-Smith L R, Wilcox M H. Evaluation of the novel artus c. difficile qs-rgq, vanr qs-rgq and mrsa/sa qs-rgq assays for the laboratory diagnosis of Clostridium difficile infection (cdi), and for vancomycin-resistant enterococci (vre) and methicillin-resistant Staphylococcus aureus (mrsa) screening. European Journal of Clinical Microbiology & Infectious Diseases, 2017, 36(5): 823-829.
[24]   Piewngam P, Chiou J, Chatterjee P, et al. Alternative approaches to treat bacterial infections: targeting quorum-sensing. Expert Review of Anti-Infective Therapy, 2020, 18(6): 499-510.
doi: 10.1080/14787210.2020.1750951
[25]   Drewnowska J M, Stefanska N, Czerniecka M, et al. Potential enterotoxicity of phylogenetically diverse Bacillus cereus sensu lato soil isolates from different geographical locations. Applied and Environmental Microbiology, 2020, 86(11): e03032-e03019.
[26]   Yehuda A, Slamti L, Malach E, et al. Elucidating the hot spot residues of quorum sensing peptidic autoinducer PapR by multiple amino acid replacements. Frontiers in Microbiology, 2019, 10: 1246.
doi: 10.3389/fmicb.2019.01246 pmid: 31231335
[27]   de F Cardoso P, Perchat S, Vilas-Boas L A, et al. Diversity of the Rap-Phr quorum-sensing systems in the Bacillus cereus group. Current Genetics, 2019, 65(6): 1367-1381.
doi: 10.1007/s00294-019-00993-9
[28]   Jahns A C, Eilers H, Alexeyev O A. Transcriptomic analysis of Propionibacterium acnes biofilms in vitro. Anaerobe, 2016, 42: 111-118.
doi: 10.1016/j.anaerobe.2016.10.001
[29]   Frenzel E, Doll V, Pauthner M, et al. CodY orchestrates the expression of virulence determinants in emetic Bacillus cereus by impacting key regulatory circuits. Molecular Microbiology, 2012, 85(1): 67-88.
doi: 10.1111/j.1365-2958.2012.08090.x pmid: 22571587
[30]   郑贝贝. 耐冷菌Bacillus cereus MYB41-22群体感应系统与其温度适应性相关功能研究. 昆明: 昆明理工大学, 2018.
[30]   Zheng B B. Mechanism of QS system involved in temperature adaptation in Bacillus cereus MYB41-22. Kunming: Kunming University of Science and Technology, 2018.
[31]   Diaz A R, Core L J, Jiang M, et al. Bacillus subtilis RapA phosphatase domain interaction with its substrate, phosphorylated Spo0F, and its inhibitor, the PhrA peptide. Journal of Bacteriology, 2012, 194(6): 1378-1388.
doi: 10.1128/JB.06747-11
[32]   Dogsa I, Choudhary K S, Marsetic Z, et al. ComQXPA quorum sensing systems may not be unique to Bacillus subtilis: a census in prokaryotic genomes. PLoS One, 2014, 9(5): e96122.
doi: 10.1371/journal.pone.0096122
[33]   Spacapan M, Danevčič T, Mandic-Mulec I. ComX-induced exoproteases degrade ComX in Bacillus subtilis PS-216. Frontiers in Microbiology, 2018, 9: 105.
doi: 10.3389/fmicb.2018.00105 pmid: 29449835
[34]   Pottathil M, Jung A, Lazazzera B A. CSF, a species-specific extracellular signaling peptide for communication among strains of Bacillus subtilis and Bacillus mojavensis. Journal of Bacteriology, 2008, 190(11): 4095-4099.
doi: 10.1128/JB.00187-08 pmid: 18375560
[35]   Koch G, Yepes A, Förstner K U, et al. Evolution of resistance to a last-resort antibiotic in Staphylococcus aureus via bacterial competition. Cell, 2014, 158(5): 1060-1071.
doi: 10.1016/j.cell.2014.06.046
[36]   Lubkowicz D, Ho C L, Hwang I Y, et al. Reprogramming probiotic Lactobacillus reuteri as a biosensor for Staphylococcus aureus derived AIP-I detection. ACS Synthetic Biology, 2018, 7(5): 1229-1237.
doi: 10.1021/acssynbio.8b00063 pmid: 29652493
[37]   Wang B Y, Zhao A S, Novick R P, et al. Key driving forces in the biosynthesis of autoinducing peptides required for staphylococcal virulence. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(34): 10679-10684.
[38]   Kirchdoerfer R N, Garner A L, Flack C E, et al. Structural basis for ligand recognition and discrimination of a quorum-quenching antibody. Journal of Biological Chemistry, 2011, 286(19): 17351-17358.
doi: 10.1074/jbc.M111.231258 pmid: 21454495
[39]   刘俐嫔, 王晓川. 肺炎链球菌感染的免疫应答. 中华全科医学, 2018, 16(9): 1540-1544.
[39]   Liu L P, Wang X C. Immune response to Streptococcus pneumonia infection. Chinese Journal of General Practice, 2018, 16(9): 1540-1544.
[40]   Moreno-Gámez S, Sorg R A, Domenech A, et al. Quorum sensing integrates environmental cues, cell density and cell history to control bacterial competence. Nature Communications, 2017, 8: 854.
doi: 10.1038/s41467-017-00903-y pmid: 29021534
[41]   Hoover S E, Perez A J, Tsui H C T, et al. A new quorum-sensing system (TprA/PhrA) for Streptococcus pneumoniae D 39 that regulates a lantibiotic biosynthesis gene cluster. Molecular Microbiology, 2015, 97(2): 229-243.
doi: 10.1111/mmi.2015.97.issue-2
[42]   王满满, 吴胜波, 吴昊, 等. 多酚干扰细菌群体感应研究进展. 中国生物工程杂志, 2022, 42(9): 93-104.
[42]   Wang M M, Wu S B, Wu H, et al. Research progress on polyphenol-based quorum sensing interfering. China Biotechnology, 2022, 42(9): 93-104.
[1] ZHENG Jie,WU Hao,QIAO Jian-jun,ZHU Hong-ji. Research Progress of Capsular Polysaccharides in Gram-positive Bacteria[J]. China Biotechnology, 2021, 41(7): 91-98.
[2] CHENG Zi-zhao,CHEN Chu-chu,YING Lei,LI Xiao-kun,HUANG Zhi-feng. Comparison of Genomic and Infection Characteristics of Coronavirus[J]. China Biotechnology, 2020, 40(11): 56-66.
[3] Xiao-fang WU,Jia-heng LIU,Hui XIONG,Jian-jun QIAO,Hong-ji ZHU. Research Progress of Lipoprotein in Gram-positive Bacteria[J]. China Biotechnology, 2018, 38(6): 86-94.
[4] Hao QIU,Ming-shu WANG,An-chun CHENG. γPNA——A New Type of High Efficient Peptide Nucleic Acid[J]. China Biotechnology, 2018, 38(2): 75-81.
[5] ZHANG Jian, WU Hao, LI Yan-ni, QIAO Jian-jun. Advances in Research on Small Non-coding RNAs of Gram-positive Bacteria[J]. China Biotechnology, 2016, 36(10): 106-114.
[6] WANG Jia-wen, FENG Jing-xian, LIN Jun-sheng, DIAO Yong. The Artificial Aptazyme Based Riboswitch[J]. China Biotechnology, 2014, 34(2): 59-64.
[7] CHEN Wu, LI Ding-jun, DING Yan, ZHANG Xu, XIAO Qi-ming, ZHOU Qing-ming. Progress in the Resistance Mechanisms of Pathogenic Microorganism against Antimicrobial Peptide[J]. China Biotechnology, 2012, 32(05): 97-106.
[8] DONG Yuan-yuan, LI Hai-yan, LI Xiao-kun, YANG Shu-lin. Molecular Expression and Regulation of MicroRNA[J]. China Biotechnology, 2011, 31(12): 109-114.
[9] SHU Xian-Can, SONG Feng-Bin. Advances of Study on Arbuscular Mycorrhizal Symbiotic Phosphate Transporter in Plants[J]. China Biotechnology, 2009, 29(12): 108-113.
[10] LIU Xiao-Di, DU Ning, GUO Li-Hong. Construction of streptococcus mutans comE mutant strain using In-frame deletion system[J]. China Biotechnology, 2009, 29(07): 80-86.
[11] WANG Jian-Hua . Mechanism of signal transduction in baterial quorum sensing system and it’s effect on antibiotics production[J]. China Biotechnology, 2008, 28(4): 87-92.
[12] . Construction and expression in vitro of RU486-inducible regulatory vector[J]. China Biotechnology, 2007, 27(6): 1-5.