Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (8): 52-62    DOI: 10.13523/j.cb.2302034
    
Transcriptomics-based Analysis of the Effect of purR Gene Deletion on Cytidine Anabolism in Escherichia coli
MA Cong1,2,ZHANG Xiang-jun1,2,YE Tong1,2,LIU Feng-min1,2,ZHANG Hao-jie1,2,LIU Hui-yan1,2,**(),FANG Hai-tian1,2,**()
1 School of Food and Wine, Ningxia University, Yinchuan 750021, China
2 Ningxia Key Laboratory of Food Microbiology Application Technology and Safety Control, Yinchuan 750021, China
Download: HTML   PDF(1594KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Cytidine is used as a raw material for drug synthesis from functional nutritional chemicals and has important application value. DNA-binding transcriptional repressors encoded by the purR gene in Escherichia coli are important regulators of cytidine anabolism. In this study, the E. coli purR gene was knocked down using CRISPR/Cas9 technology and the differences in gene expression of mutant strains were analyzed by transcriptomics. The results showed that the purR gene was successfully knocked out from the genome of the starting strain E. coli NXBG-12, and the mutant strain E. coli NXBG-17P was obtained. Comparative analysis of transcriptomic results from mutant strains E. coli NXBG-17P and E. coli NXBG-12 revealed 534 differential genes, including 302 up-regulated genes and 232 down-regulated genes. GO analysis showed that differentially expressed genes (DEGs) were mainly enriched in the metabolic processes of cytoplasmic membrane, ATP binding, DNA binding and hydrolase activity; KEGG analysis showed that up-regulated genes were mainly enriched in fructose and mannose metabolism, pyrimidine metabolism and phosphotransferase system, and down-regulated genes were mainly enriched in oxidative phosphorylation, galactose metabolism and peptidoglycan biosynthesis. Meanwhile, mutant strain E. coli NXBG-17P was fermented in a shake flask at 37℃ for 40 h. The cytidine concentration was determined to be (3.21±0.01) g/L, which was 1.58 times the level of the starting strain E. coli NXBG-12. It is well demonstrated that purR gene deletion enhances PTS (glucose phosphotransferase system) transport and pentose phosphate pathway, which can provide more NADPH and pyrimidine nucleoside precursors PRPP for cytidine synthesis pathway.



Key wordsEscherichia coli      Cytidine      purR gene      Gene knockout      Transcriptome analysis     
Received: 20 February 2023      Published: 05 September 2023
ZTFLH:  Q815  
Cite this article:

MA Cong, ZHANG Xiang-jun, YE Tong, LIU Feng-min, ZHANG Hao-jie, LIU Hui-yan, FANG Hai-tian. Transcriptomics-based Analysis of the Effect of purR Gene Deletion on Cytidine Anabolism in Escherichia coli. China Biotechnology, 2023, 43(8): 52-62.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2302034     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I8/52

菌株/质粒 菌株/质粒特征 来源
E. coli NXBG-12 野生型 本实验室保藏
E. coli NXBG-17P 基因缺失型E. colipurR) 本研究构建
pCas zrepA101(Ts)kan Pcas-cas9 ParaB-Red lacIqPtrc-sgRNA-pMB1 [4]
pTargetF pMB1 aadA sgRNA [4]
pTargetF-purR pMB1 aadA sgRNA-purR 本研究构建
Table 1 Bacterial strains and plasmids used in this study
引物 引物序列(5'-3')
sg20-F-SpeI GTCCTAGGTATAATACTAGTAAGAAACGCGCAACGCCGTGGTTTTAGAGCTAGAAATAGC
sg20-R TTCAAAAAAAGCACCGACTCGG
purR-Up-F CCGAGTCGGTGCTTTTTTTGAACAGGAAGGAGATGCGAGGGAG
purR-Up-R AGCGGTCTGCGTTGGATTGATGT
purR-Down-F AAGATGTAGCGAAACGAGCAAACGATCGTCGTTAATCACCCGTTGC
purR-Down-R-PstI AACTGCAGGTTGCGTTGTTGCCAGTCACC
purR-F ATGGCAACAATAAAAGATGTAGCGA
purR-R TTAACGACGATAGTCGCGGAAC
Table 2 Primers used in this experiment
Fig.1 Verification results of CRISPR-mediated purR knockout M:2 000 bp DNA marker;1,2:Product after knockout of purR (120 bp);3,4:Pre-knockdown PCR product control (1 005 bp)
Fig.2 Growth curve of starting strain and mutant strain
Fig.3 Sugar consumption of starting strain and mutant strain
Fig.4 Cytidine production of starting strain and mutant strain
样本名称 原始序列数/条 质控后序列数/条 Q20/% Q30/% 比对唯一位点序列数占百分比/%
E. coli NXBG-12_1 27 593 726 26 807 752 97.94 94.78 98.28
E. coli NXBG-12_2 27 157 966 26 473 876 97.99 94.84 98.42
E. coli NXBG-12_3 28 037 004 27 135 972 97.97 94.83 97.75
E. coli NXBG-17P_1 28 806 658 27 930 726 98.13 94.92 98.01
E. coli NXBG-17P_2 27 803 854 26 914 230 98.08 94.85 98.00
E. coli NXBG-17P_3 30 197 990 29 105 462 98.03 94.81 98.00
Table 3 Sequencing data quality control comparison results
Fig.5 Sample correlation analysis
Fig.6 Differentially expressed gene volcano map
Fig.7 GO enrichment analysis of differentially expressed genes
KEGG功能注释分类 数量/个 比例/%
上调基因 下调基因 上调基因 下调基因
氨基酸代谢 22 6 12.9 4.7
其他次生代谢物的生物合成 1 2 0.6 1.6
碳水化合物代谢 26 13 15.2 10.2
能量代谢 6 14 3.5 11.0
聚糖生物合成和代谢 0 7 0.0 5.5
脂质代谢 8 3 4.7 2.4
辅因子和维生素代谢 11 5 6.4 3.9
其他氨基酸代谢 6 2 3.5 1.6
萜类化合物和聚酮化合物代谢 8 0 4.7 0.0
核苷酸代谢 6 5 3.5 3.9
异生物质的生物降解和代谢 7 5 4.1 3.9
Table 4 KEGG pathway enrichment analysis of DEGs
KEGG通路分类 数量/个 比例/%
上调基因 下调基因 上调基因 下调基因
00190 氧化磷酸化 0 10 0.0 6.3
00052 半乳糖代谢 2 7 0.9 4.4
00240 嘧啶代谢 4 4 1.8 2.5
00550 肽聚糖的生物合成 0 6 0.0 3.8
00010 糖酵解/葡萄糖生成 3 3 1.3 1.9
02060 磷酸转移酶系统(PTS) 4 2 1.8 1.3
00910 氮代谢 1 0 0.4 0.0
00051 果糖和甘露糖代谢 6 0 2.7 0.0
00620 丙酮酸代谢 3 2 1.3 1.3
00410 β-丙氨酸代谢 4 1 1.8 0.6
00250 丙氨酸、天冬氨酸和谷氨酸代谢 0 3 0.0 1.9
00030 PPP途径 0 1 0.0 0.6
00020 TCA循环 1 0 0.4 0.0
Table 5 KEGG pathway functional annotation of DEGs
Fig.8 Schematic representation of gene expression related to cytidine synthesis-related pathway Red representing upward adjustmen, blue representing downward adjustment
Fig.9 DEGs qRT-PCR validation results
[1]   Deep A, Narasimhan B, Kumar S. A review on synthesis, anticancer and antiviral potentials of pyrimidine derivatives. Current Bioactive Compounds, 2019, 15(3): 289-303.
doi: 10.2174/1573407214666180124160405
[2]   吴庆, 刘慧燕, 方海田, 等. 解淀粉芽孢杆菌高效合成胞苷的代谢调控机制及育种策略. 中国生物工程杂志, 2015, 35(9): 122-127.
[2]   Wu Q, Liu H Y, Fang H T, et al. Metabolic control fermentation mechanism and breeding strategies of cytidine excessive biosynthesis in Bacillus amyloliquefaciens. China Biotechnology, 2015, 35(9): 122-127.
[3]   马若霜, 方海田, 刘慧燕, 等. 生物法合成胞苷的研究进展. 食品与发酵科技, 2019, 55(1):71-75, 78.
[3]   Ma R S, Fang H T, Liu H Y, et al. Research progress in the synthesis of cytidine by biological methods. Sichuan Food and Fermentation, 2019, 55(1):71-75, 78.
[4]   刘益宁, 秦臻, 李旋, 等. 胞苷合成途径改造对大肠杆菌嘧啶核苷发酵的影响. 食品与发酵工业, 2021, 47(12):10-16.
[4]   Liu Y N, Qin Z, Li X, et al. Effect of cytidine synthesis pathway modification on the fermentation of pyrimidine nucleoside by Escherichia coli. Food and Fermentation Industries, 2021, 47(12):10-16.
[5]   Yang D, Park S Y, Park Y S, et al. Metabolic engineering of Escherichia coli for natural product biosynthesis. Trends in Biotechnology, 2020, 38(7): 745-765.
doi: 10.1016/j.tibtech.2019.11.007
[6]   赵贝贝, 方海田, 刘慧燕, 等. 解淀粉芽孢杆菌psd基因过表达对胞苷发酵的影响. 食品工业科技, 2019, 40(19):122-128.
[6]   Zhao B B, Fang H T, Liu H Y, et al. Effect of over-expression of psd gene on the production of cytidine in Bacillus amyloliquefaciens. Science and Technology of Food Industry, 2019, 40(19):122-128.
[7]   Wu H Y, Li Y J, Ma Q, et al. Metabolic engineering of Escherichia coli for high-yield uridine production. Metabolic Engineering, 2018, 49: 248-256.
doi: 10.1016/j.ymben.2018.09.001
[8]   Fan X G, Wu H Y, Li G L, et al. Improvement of uridine production of Bacillus subtilis by atmospheric and room temperature plasma mutagenesis and high-throughput screening. PLoS One, 2017, 12(5): e0176545.
[9]   Ma R S, Fang H T, Liu H Y, et al. Overexpression of uracil permease and nucleoside transporter from Bacillus amyloliquefaciens improves cytidine production in Escherichia coli. Biotechnology Letters, 2021, 43(6): 1211-1219.
doi: 10.1007/s10529-021-03103-3
[10]   Cho B K, Federowicz S A, Embree M, et al. The PurR regulon in Escherichia coli K-12 MG1655. Nucleic Acids Research, 2011, 39(15): 6456-6464.
doi: 10.1093/nar/gkr307
[11]   Choi K Y, Zalkin H. Regulation of Escherichia coli pyrC by the purine regulon repressor protein. Journal of Bacteriology, 1990, 172(6): 3201-3207.
pmid: 1971620
[12]   Wilson H R, Jr Turnbough C L. Role of the purine repressor in the regulation of pyrimidine gene expression in Escherichia coli K-12. Journal of Bacteriology, 1990, 172(6): 3208-3213.
pmid: 1971621
[13]   Larsen J N, Jensen K F. Nucleotide sequence of the pyr D gene of Escherichia coli and characterization of the flavoprotein dihydroorotate dehydrogenase. European Journal of Biochemistry, 1985, 151(1): 59-65.
pmid: 2992959
[14]   Devroede N, Thia-Toong T L, Gigot D, et al. Purine and pyrimidine-specific repression of the Escherichia coli carAB operon are functionally and structurally coupled. Journal of Molecular Biology, 2004, 336(1): 25-42.
pmid: 14741201
[15]   Piette J, Nyunoya H, Lusty C J, et al. DNA sequence of the carA gene and the control region of carAB:tandem promoters, respectively controlled by arginine and the pyrimidines, regulate the synthesis of carbamoyl-phosphate synthetase in Escherichia coli K-12. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(13): 4134-4138.
[16]   Meng L M, Kilstrup M, Nygaard P. Autoregulation of PurR repressor synthesis and involvement of purR in the regulation of pur B, purC, purL, purMN and guaBA expression in Escherichia coli. European Journal of Biochemistry, 1990, 187(2): 373-379.
pmid: 2404765
[17]   Spoto M, Guan C H, Fleming E, et al. A universal, genomewide GuideFinder for CRISPR/Cas 9 targeting in microbial genomes. mSphere, 2020, 5(1): e00086-20.
[18]   Xia J, Wang L, Zhu J B, et al. Expression of Shewanella frigidimarina fatty acid metabolic genes in E. coli by CRISPR/Cas9-coupled lambda Red recombineering. Biotechnology Letters, 2016, 38(1): 117-122.
doi: 10.1007/s10529-015-1956-4
[19]   Hong K Q, Liu D Y, Chen T, et al. Recent advances in CRISPR/Cas 9 mediated genome editing in Bacillus subtilis. World Journal of Microbiology and Biotechnology, 2018, 34(10): 153.
doi: 10.1007/s11274-018-2537-1
[20]   Khanzadi M N, Khan A A. CRISPR/Cas9: nature’s gift to prokaryotes and an auspicious tool in genome editing. Journal of Basic Microbiology, 2020, 60(2): 91-102.
doi: 10.1002/jobm.201900420 pmid: 31693214
[21]   陈若楠. 系统代谢工程改造大肠杆菌产丙酮酸的研究. 北京: 北京化工大学, 2018.
[21]   Chen R N. Study on the transformation of Escherichia coli to produce pyruvate by systematic metabolic engineering. Beijing: Beijing University of Chemical Technology.
[22]   Deutscher J, Francke C, Postma P W. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiology and Molecular Biology Reviews: MMBR, 2006, 70(4): 939-1031.
doi: 10.1128/MMBR.00024-06
[23]   杜建涛, 魏伟, 徐庆阳, 等. 基于代谢流分析的L-组氨酸产生菌定向选育. 现代食品科技, 2010, 26(1): 5-8, 27.
[23]   Du J T, Wei W, Xu Q Y, et al. Application of metabolic flux analysis for screening of L-histidine-producing strains. Modern Food Science & Technology, 2010, 26(1): 5-8, 27.
[24]   Bonekamp F, Clemmesen K, Karlström O, et al. Mechanism of UTP-modulated attenuation at the pyrE gene of Escherichia coli: an example of operon polarity control through the coupling of translation to transcription. The EMBO Journal, 1984, 3(12): 2857-2861.
doi: 10.1002/embj.1984.3.issue-12
[25]   Sauer U, Canonaco F, Heri S, et al. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. Journal of Biological Chemistry, 2004, 279(8): 6613-6619.
doi: 10.1074/jbc.M311657200 pmid: 14660605
[26]   Everaert C, Luypaert M, Maag J L V, et al. Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-qPCR expression data. Scientific Reports, 2017, 7(1): 1-11.
doi: 10.1038/s41598-016-0028-x
[1] YANG Yi-ying, LI Xiao-le, LI Zi-long, LI Qiu-yuan, CHEN Wei, YIN Shou-liang. Application of the Efficient Counter-selection Method in Gene Deletion of Microorganism[J]. China Biotechnology, 2023, 43(4): 101-111.
[2] LU Nan-xun, Wang Li-wei, LIU Mei-xiu, ZHANG Zhong-hua, CHANG Jing-ling, LI Zhi-gang. Global Gene Transcriptome Analysis for Enhanced Cyclic Adenosine Monophosphate Fermentation Performance by Polyphosphates[J]. China Biotechnology, 2023, 43(4): 41-50.
[3] LE Yi-lin,FU Yu,NI Li,SUN Jian-zhong. Expression and Characterization of a Thermostable Pyruvate Ferredoxin Oxidoreductase from the Hyperthermophile Thermotoga neapolitana and Its Application in Acetyl-CoA Production[J]. China Biotechnology, 2020, 40(3): 72-78.
[4] GUO Sheng-nan, LI Xin-xiao, WANG Feng, LIU Kun-mei, DING Na, HU Qi-kuan, SUN Tao. Establishment and Identification of the Neocortex and Hippocampus GABRG2 Knockout Mice and Its Preliminary Study in Generalized Epilepsy with Febrile Seizures Plus[J]. China Biotechnology, 2020, 40(3): 9-20.
[5] Hang Hai-ying,Liu Chun-chun,Ren Dan-dan. Development, Application and Prospection of Flow Cytometry[J]. China Biotechnology, 2019, 39(9): 68-83.
[6] WAN Ying-han,CI Lei,WANG Jue,GONG Hui,LI Jun,DONG Ru,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Construction and Preliminary Phenotypic Verification of PD-L1 Knockout Mice[J]. China Biotechnology, 2019, 39(12): 42-49.
[7] WU Guo-guo,SONG Shu-ting,YUE Rong,ZHANG Jing,GUAN Ying,WANG Yue,LIU Bao-ai,LV Xue-min,WEI Jian-jun,ZHANG Hui-tu. Application of Counterseletable Gene upp in Genetic Manipulation of Streptomyces fungicidicus[J]. China Biotechnology, 2019, 39(11): 78-86.
[8] LU Hai-yan,LI Jia-man,SUN Si-fan,ZHANG Xiao-mao,DING Juan-juan,ZOU Shao-lan. Construction of an Auxotrophic Mutant from an Industrial Saccharomyces cerevisiae Strain by CRISPR-Cas9 System[J]. China Biotechnology, 2019, 39(10): 67-74.
[9] Chun-xiao SU,Xiao-yu ZHANG,Han ZENG,Ya-xi CHEN,Xiong-zhong RUAN,Ping YANG. Establishment and Identification of Liver-Specific CD36 Knockout Mice[J]. China Biotechnology, 2018, 38(8): 26-33.
[10] HE Guan-rong,HE Bi-zhu,WU Sha-sha,SHI Jing-shan,CHEN Ji-shuang,LAN Si-ren. Establishment of an Efficient Regeneration System in Goodyera foliosa and Comprehensive Analysis of Functionally Regulated Genes Involved in Developmental Regulatory Pathways Based on Transcriptome Analysis[J]. China Biotechnology, 2018, 38(12): 57-64.
[11] Yu-rui SHENG,Bin LI,Bin WANG,Di ZUO,Lin MA,Xiao-fan REN,Le GUO,Kun-mei LIU. The Construction of AEG-1-Knockout U251 Cell Line by CRISPR/Cas9 Technology and Study of The Effect of AEG-1 on the Metastasis in U251 Cells[J]. China Biotechnology, 2018, 38(10): 38-47.
[12] ZHANG Zhen-yang, YANG Yan-kun, ZHAN Chun-jun, LI Xiang, LIU Xiu-xia, BAI Zhong-hu. Pichia pastoris X-33 ΔGT2 Release the Glycerol Repression on AOX1 and Ef-ficiently Express Heterologous Proteins[J]. China Biotechnology, 2017, 37(1): 38-45.
[13] DU Hong-yan, LI Tian-ming, LIU Jin-lei, FENG Hui-yong. Construct the Uracil Phosphoribosyl Transferase Gene Mutant Strain in Gluconobacter suboxydans for Seamless Genome Editing[J]. China Biotechnology, 2016, 36(7): 64-71.
[14] HAN Hai hong, WANG Jun qing, WANG Teng fei, XIAO Jing, HAN Deng lan, WANG Rui ming. Method and Application of Gene Knockout Based Single Cross in Bacillus licheniformis 20085[J]. China Biotechnology, 2016, 36(11): 63-69.
[15] WU Qing, LIU Hui-yan, FANG Hai-tian, HE Jian-guo, HE Xiao-guang, YU Li-nan, WANG Meng-jiao. Metabolic Control Fermentation Mechanism and Breeding Strategies of Cytidine Excessive Biosynthesis in Bacillus amyloliquefaciens[J]. China Biotechnology, 2015, 35(9): 122-127.