Establishment of an Efficient Regeneration System in Goodyera foliosa and Comprehensive Analysis of Functionally Regulated Genes Involved in Developmental Regulatory Pathways Based on Transcriptome Analysis

HE Guan-rong,HE Bi-zhu,WU Sha-sha,SHI Jing-shan,CHEN Ji-shuang,LAN Si-ren

China Biotechnology ›› 2018, Vol. 38 ›› Issue (12) : 57-64.

PDF(1539 KB)
PDF(1539 KB)
China Biotechnology ›› 2018, Vol. 38 ›› Issue (12) : 57-64. DOI: 10.13523/j.cb.20181208
Orginal Article

Establishment of an Efficient Regeneration System in Goodyera foliosa and Comprehensive Analysis of Functionally Regulated Genes Involved in Developmental Regulatory Pathways Based on Transcriptome Analysis

Author information +
History +

Abstract

Goodyera foliosa, belonged to the genus of Cymbidium, is an endangered wild and national secondary protected plant which is used as ornamental plants and for various medicinal purposes. Duo to its small distribution population and weak transmission and diffusion, the natural reproduction is greatly limited. In this study, a high efficient in vitro regeneration system was developed from stem explants of Goodyera foliosa. The functional genes involved in the morphogenesis development was deeply explored by integrating with high-throughput transcriptome sequencing and bioinformatics analysis technology. For shoot-inducing , the optical culture medium is Morel + 2.0 mg/L 6-BA + 0.5 mg/L KT+1.0 mg/L NAA + 1g/L peptone + 25g/L sucrose + 7.0 g/L Agar + 1.0 g/L active carbon + 30 g/L banana + 50 g/L potato. The optical culture medium for bud proliferation is Morel + 3 mg/L 6-BA + 0.5 mg/L NAA + 0.5 mg/L KT + 0.01 mg/L TDZ + 2g/L peptone + 25g/L sucrose + 7.0 g/L Agar + 1.0 g/L active carbon + 30g/L banana + 50g/L potato. On the rooting medium with 1/2 Morel + 1.0 mg/L IBA + 0.1 mg/L NAA + 1 g/L + Hyponex NO.2 + 25g/L sucrose + 7.0g/L Agar + 1.0 g/L active carbon + 1g/L peptone. After transcriptom sequencing and assembling, 170, 688 Unigenes were obtained. The average length and N50 length of Unigenes was 584bp and 833bp respectively. Total of 17, 352 Unigenes were completely annotated to 5 functional databases including NR, Swiss-Prot, KOG, GO and KEGG. The functional analysis of differential Unigenes was showed that hormone signal transduction, plant development, secondary metabolites and energy metabolism were significantly enriched. Moreover, 511 Unigene encoding transcription factors involved with plant organ developmental regulation were predicted. Conclusion, a comprehensive transcriptom landscape of Goodyera foliosa was described by integrating with a high efficient in vitro regeneration system and next high-throughput trancriptom sequencing. This work could provide certain reference for fast propagation, genetic transformation, functional gene mining and development mechanism research of Goodyera foliosa.

Key words

Goodyera foliosa (Lindl) Benth. / Bioresource conservation / Seedling regeneration Organ development / Transcriptome analysis

Cite this article

Download Citations
Guan-rong HE, Bi-zhu HE, Sha-sha WU, et al. Establishment of an Efficient Regeneration System in Goodyera foliosa and Comprehensive Analysis of Functionally Regulated Genes Involved in Developmental Regulatory Pathways Based on Transcriptome Analysis[J]. China Biotechnology, 2018, 38(12): 57-64 https://doi.org/10.13523/j.cb.20181208
多叶斑叶兰(Goodyera foliosa),又称厚唇斑叶兰,是兰科斑叶兰属植物,分布与福建、台湾、广东、广西、四川、云南西部至东南部、西藏东南部(墨脱)。生于海拔300-1500米的林下或沟谷阴湿处 [1]。被国际贸易公约列入濒危野生动植物,属国家二级保护植物,为观赏和中药价值兼备的兰科植物[2]。由于多叶斑叶兰分布种群小,传播扩散能力弱,自然更新困难,其自然繁殖受到很大限制。目前对多叶斑叶兰研究较少。查兆兵等从多叶斑叶兰的繁育系统与昆虫传粉行为方面进行研究,揭示多叶斑叶兰花色及花香气味是最主要吸引传粉者的因素[3]。其他有关植株再生、繁育技术以及转录组学研究未见报道。
植物组织培养技术,具有生长周期短,繁殖率高,培养条件可以人为控制,管理方便等优势,能够克服有性生殖障碍,尤其对于珍稀濒濒危植物种质资源保存,丰富林园多样性具有重要的应用价值[4,5,6,7]。目前斑叶兰属已有部分植物建立了组织快繁体系,已有学者分别建立了濒危植物斑叶兰与绒叶斑叶兰的组织培养体系[8,9,10]。对兰科植物开展组织繁育的研究是当前兰科植物保护的重要内容,多叶斑叶兰的物种保护研究也至关重要。
转录组学是研究特定类型组织在特定的生长发育阶段或某种特定状态下表达的所有转录本的科学[11]。由于缺乏全基因组信息,早期的转录组学研究技术没有在濒危植物转录组学研究中得到很好的应用。近几年随着高通量测序技术以及生物信息学的飞速发展,使得一些濒危植物转录组学研究才得以逐步开展起来。转录组学能够在全基因组层面准确地量化基因表达水平,进行比较基因组学研究,能够更好的帮助我们理解进化、基因突变以及基因调控等多种生物学过程[12,13,14]。本研究以野生多叶斑叶兰茎段作为外植体,建立高效直接的植株再生体系。结合高通量转录组测序技术与生物信息学分析技术,深入挖掘参与多叶斑叶兰器官发育过程的功能基因。

1 材料与方法

1.1 材 料

外植体材料为多叶斑叶兰健壮、无病虫害植株茎段,采自福建永安天宝岩自然保护区内。转录组测序材料为野生多叶斑叶兰外幼嫩叶片组织与组培苗叶片组织。

1.2 再生体系建立

1.2.1 外植体处理 流水冲洗表面沙土,饱和漂白粉上清液中泡洗5min,双蒸水冲洗2~3次,超净工作台内75%酒精消毒30s,0.1%升汞处理8~13min,无菌水冲洗3~4遍,灭菌滤纸吸干表面水分进行接种。
1.2.2 芽诱导培养基筛选 以预筛选的Morel为基本培养基,生长素选择NAA,其浓度为0.1、0.5和1.0mg/L。细胞分裂素选择6-BA、其浓度为1.0、2.0和3.0mg/L,其正交试验筛选芽诱导最适培养基。
1.2.3 芽增值培养基筛选 以Morel为基本培养基,生长素选择NAA,其浓度为0.1、0.5、1.0、1.5和2.0mg/L,细胞分裂素选择6-BA、KT和TDZ,其浓度分别为2.0、0.5和0.02mg/L。筛选芽增值最佳培养基。
1.2.4 生根培养基筛选 当丛生芽生长高度为2~4cm,叶2~3片时,将其转入生根培养基,生根培养基以1/2 Morel为基本培养基,加入IBA浓度为0.5、1.0、1.5、2.0和2.5mg/L,NAA浓度为0.3mg/L,花宝2 1.0g/L.进行诱导生根。诱导生根时间25-30d。
1.2.5 培养条件 所有培养基均添加蔗糖25g/L,琼脂7g/L,PH值5.5~5.7。培养温度为23±2℃,光照强度1 000~2 000lx,茎诱导阶段先暗培养10d后转入光照条件下,光照时间10h/d。每个处理接10瓶,重复3次,每瓶接外植体3个,30d后统计生长状况。
1.2.6 数据分析 每个处理重复3次,取平均值。采用SPSS19.0软件进行数据统计分析。统计公式如下:诱导率=诱导芽个数/接种个数×100%,增殖率=增殖芽个数/接种个数×100%,生根率=生根个数/接种个数×100%。

1.3 转录组测序

1.3.1 测序文库构建 采用TIANGEN公司TRIzol试剂盒提取多叶斑叶兰叶片总RNA,利用Thermo Scientific NaNoDrop 2000c检测RNA浓度和纯度,Agilent 2100检测RNA完整度。取完整度大于7的RNA进行测序文库构建,合格文库经Illumina HiSeq 4000平台进行测序,测序模式为双末端150bp。
1.3.2 Unigene序列组装与功能注释 下机测序数据为Fastq格式,采用Trimmomatic软件(版本:0.36)去除原始序列中的测序接头,并根据碱基质量值对Fastq进行修剪,获得有效数据。采用Trinity软件(版本:2.8.4)进行转录本拼接与组装。采用TGICL软件(版本:2.1)对组装后的转录本序列进行聚类并去冗余,获得非冗余基因基(Unigene)。采用TransDecoder软件(版本:5.5.0)预测Unigene序列中的开放阅读框(ORF),获得Unigene对应的氨基酸序列。取预测获得的Unigene对应的氨基酸序列分别进行NR、UniProt、COG、GO与KEGG等数据库进行基因功能注释。
1.3.3 转录因子分析及Unigene功能分析 将Unigene对应的氨基酸序列与植物转录因子数据库PlantTFDB http://planttfdb.cbi.pku.edu.cn/)(版本:4.0)进行比对,获得多叶斑叶兰叶转录因子家族信息。采用topGO软件(版本:2.34.0)与KOBAS软件(版本:3.0)分别对Unigene进行GO功能与KEGG信号通路富集分析。

2 结果与分析

2.1 不同激素浓度配比对繁育体系影响

2.1.1 不同浓度6-BA对芽诱导的影响 将丛生芽转到不同浓度的6-BA培养基上进行继代增殖培养,得到大量的不定芽。表1所示,以5种不同浓度的6-BA诱导下,丛生芽倍数先随6-BA浓度的上升而增加,且各浓度间差异显著。但达到一定浓度后,生芽倍数随6-BA浓度升高而降低。试验结果显示在2.0mg/L 6-BA诱导下,芽增殖倍数较多,诱导率为95.2%,生长状况最好。综上所述,Morel+2.0mg/L 6-BA+0.5mg/L KT+1.0mg/L NAA+1g/L蛋白胨+25g/L蔗糖+7.0g/L Agar+1.0g/L活性炭+30g/L香蕉+50g/L土豆为最佳的芽诱导培养基。
Table 1 Effect of 6-BA on inducing multiple shoots

表1 6-BA含量对芽诱导的影响

6-BA激素配比
6-BA (mg/L)
外植体数
Number of explants
增殖倍数
Proliferation rate
生长态势
Growth situation
1.0502.22±0.03c芽少,细弱,生长慢
1.5502.61±0.02b芽多,壮实,生长块
2.0503.21±0.03a芽多,壮实,生长块
2.5502.11±0.03d芽少,壮实,生长慢
3.0501.40±0.03e芽少,细弱,生长慢
2.1.2 不同浓度NAA对芽增值的影响 表2表明,不同浓度的NAA对芽增殖倍数影响显著。NAA浓度越大,芽增殖倍数越大,1.0mg/L NAA增殖倍数最大,比0.1mg/L NAA处理高204.35%。因此Morel+2.0mg/L BA+1.0mg/L NAA+0.5mg/L KT+0.02mg/L TDZ+30g香蕉+50g土豆,芽增殖效果最佳,生长状态最好。
Table 2 Effect of NAA on bud multiplication

表2 NAA含量对芽增殖的影响

NAA激素配比
NAA (mg/L)
增殖倍数
Proliferation rate
生长态势
Growth situation
0.10.92±0.02e少量芽、稍绿、长势弱
0.51.61±0.02d少量芽、稍绿、长势弱
1.02.34±0.04b芽健壮、浓绿、生长正常
1.52.80±0.03a芽健壮、浓绿、生长正常
2.02.10±0.03c芽健壮、绿、生长弱
2.1.3 不同浓度IBA对根诱导的影响 表3所示,随IBA浓度增加,生根数量和平均根长差异显著。1.0mg/L IBA浓度下生根最多。若提高IBA浓度至2.0mg/L,生根效果反而下降。平均根长方面,根长差异显著,与生根数变化趋势基本相同,1.0mg/L IBA浓度下根系长度生长最好。因此1/2Morel+1.0mg/L IBA+0.3mg/L NAA+1g/L+花宝2 号+25g/L蔗糖+7.0g/L Agar +1.5g/L活性炭+1g/L蛋白胨是最佳的生根培养基。
Table 3 Effect of IBA levels on shoot rooting of the plantlet

表3 IBA的含量对生根的影响

IBA激素配比
IBA(mg/L)
株数
Number of seedlings
生根数
Root number
平均根长
Mean length of root
0.55031.20±1.60b1.92±0.02c
1.05038.23±0.18a2.63±0.03a
1.55029.93±0.18b2.10±0.01b
2.05024.00±0.21c1.61±0.02d
2.55020.13±0.23d1.39±0.01e

2.2 多叶斑叶兰转录组分析

2.2.1 Unigene序列拼接与组装 采用Illumina Hiseq 4000测序平台对野生多叶斑叶兰叶片(YS)与组培苗(ZP)进行高通量,共测序获得9 240Mb测序reads(YS为4 952Mb,ZP为4 288Mb)。原始reads经Trimmomatic软件修剪后,共获得9 178Mb有效测序reads(YS为4 919Mb,ZP为4 259Mb)。质量不低于30的碱基数目占碱基总数目的比例为98.56%,说明测序质量较高。使用Trinity软件进行Unigene序列拼接组装,共获得170 688个Unigene,拼接总长度为99 748 787bp,Unigene平均长度584bp,N50长度为833bp,GC含量为40.36%。Unigene序列长度主要集中在200-500bp,共47 980条,占比33.97%。Unigene序列长度大于1 000bp的有20379条,占比11.94%(图1)。
Fig.1 Length distribution of Unigenes

图1 Unigene长度分析

Full size|PPT slide

2.2.2 Unigene功能注释 将TransDecoder软件预测获得的55 861个Unigene的氨基酸序列分别与NR、UniProt、COG、GO与KEGG等数据库进行Unigene功能注释。五大数据库总共注释到17 352个Unigene,其中NR数据库注释10 003个Unigene,UniProt数据库注释10 128个Unigene,COG数据库注释10 015个Unigene,GO数据库注释到4 589个Unigene,KEGG数据库注释3 184个Unigene(图2)。
Fig.2 Veen diagram of annotated Unigenes

图2 功能注释韦恩图

Full size|PPT slide

2.2.3 转录因子分析 将Unigene序列导入PlantTFDB数据库,以拟南芥转录因子数据作为最佳的匹配对象,比对获得包含48个转录因子家族的511个转录因子。注释到转录因子最多的家族分别是FAR1家族(37个Unigene),bHLH家族(36个Unigene),C2H2家族(34个Unigene),GRAS家族(33个Unigene)以及ERF家族(32个Unigene)。
2.2.4 多叶斑叶兰发育调控功能基因分析 将ZP与YS组进行差异表达分析,按照差异倍数≥4及卡方检验Qvalue≤0.01,筛选获得9 999个差异表达Unigene,包含5 000个上调表达与4 999个下调表达的差异基因。GO功能富集分析显示,钙离子跨膜运输(calcium ion transmembrane transport),氧化还原(oxidation-reduction process),以及跨膜运输调控(regulation of transmembrane transport)等生物功能显著富集(图 3)。KEGG代谢通路富集分析显示,类固醇生物合成途径(Steroid biosynthesis)与戊糖和葡萄糖醛酸转化途径(Pentose and glucuronate interconversions)等显著富集(图 4)。
Fig.3 GO function analysis of differential expressed Unigenes

图3 差异Unigene GO功能富集结果

Full size|PPT slide

Fig.4 KEGG function analysis of differential expressed Unigenes

图4 差异Unigene KEGG功能富集结果

Full size|PPT slide

3 结论与讨论

目前对多叶斑叶兰的研究还处于起步阶段,偶见关于多叶斑叶兰的研究。由于该兰花观赏性强且有良好的药用价值,具备一定的人工培育价值。通过对多斑叶兰属植物的调查发现,该属植物种子繁殖能力较弱且收集困难,给大规模扩增繁殖造成一定影响。通过合理调整培养基的配比可以有效解决多叶斑叶兰自然繁殖能力弱,对环境要求高的特点。本研究在人工调节环境下,采用组织培养方法能有效提高该植物增殖的增殖率和生根率以及植株生长。
本研究发现添加有机添加物对多叶斑叶兰根状茎的增殖和生长、生根有促进的作用,这与大花蕙兰的研究中获得的结果相似[15],由于有机添加物的构成成分复杂,理论上无法判断起作用的成分是那一类。但在兰花组织培养的实践中,筛选出的适宜添加物种类和用量是有助于兰花生长、繁育和生根,对兰花的资源保存和离体繁殖具有重要的实践意义。
本研究首次通过高通量转录组测序技术获得多叶斑叶兰的完整基因表达谱,共得到170 688个Unigene,55 861个Unigene能够预测到开放阅读框(ORF),另外67.27%的Unigene未预测到ORF,可能是多叶斑叶兰的一类非编码RNA,但它们是否存在调控功能,还有待于全基因组基因序列的测序完成。通过对NR数据库比对物种进行统计,我们发现注释数量前三的物种为石斛、蝴蝶兰与拟兰。这些物种的基因组都高度负责,而且基因组内存在大量重复序列[16,17,18],从而解释在多叶斑叶兰中存在大量的不具有ORF的Unigene。同时,我们发现在具有的ORF的Unigene中,也存在68.94%的Unigene未能注释到数据库。对于这些未知基因的功能解析,将有助于深入挖掘多叶斑叶兰次生代谢产物的合成机制以及关键酶,为优良种质资源鉴定以及选育提供分子基础。本研究成功建立了多叶斑叶兰种质资源保存与高效离体再生体系,结合高通量转录组学技术,获得全面完整的多叶斑叶兰转录组信息特征,为后期多叶斑叶兰快速扩繁、遗传转化以及功能基因鉴定、遗传发育及其调控机制研究奠定基础。

References

[1]
郎楷永, 陈心启, 罗毅波. 中国植物志, 第17 卷第1 分册. 北京: 科学出版社, 1999, 17(1): 142-143.
Lang K Y, Chen X Q, Luo Y B.Flora Reipublicae Popularis Sinicae, Tomus. Beijing: Science Press, 1999, 17(1): 1421-143.
[2]
范志刚, 孔令杰, 彭德镇, 等. 齐云山自然保护区兰科植物资源分布及其区系特点. 热带亚热带植物学报, 2011, 19(2): 159-165.
Fan Z G, Kong L J, Peng D Z, et al.Distribution and floristic characteristics of wild orchids in Qiyunshan nature reserve. Journal of Tropical and Subtropical Botany, 2011, 19(2): 159-165.
[3]
查兆兵, 唐静, 梁跃龙, 等. 多叶斑叶兰繁育系统与传生物学研究. 热带亚热带植物学报, 2016, 24(3): 333-341.
Zha Z B, Tang J, Liang Y L, et al.Breeding system and pollination biology of goodyera foliosa (Orchidaceae). Journal of Tropical and Subtropical Botany, 2011, 19(2): 159-165.
[4]
吴安湘, 金晓玲, 熊芳. 珍稀濒危植物组织培养研究进展. 西北植物学报, 2006, 26(1): 0211-0216.
Wu A X, Jin X L, Xiong L.Research advances about tissue culture of endangered plants in China. Acta Botanica Boreali-Occidentalia Sinica, 2011, 19(2): 159-165.
[5]
程明, 李厚华, 和子森, 等. 濒危植物羽叶丁香组织培养. 北方园艺, 2016, 12: 92-96.
Cheng M, Li H H, He Z S,et al.Tissue culture of endangered plant Syringa pinnatifolia. Northern Horticulture, 2016, 12: 92-96.
[6]
张艳玲, 唐澄莹, 何夫, 等. 珍稀濒危植物北碚榕的组培快繁. 植物生理学报, 2015, 51(4): 471-475.
Zhang Y L, Tang D Y, He F, et al.Tissue culture and rapid propagation of rare and endangered ficus beipeiensis. Plant Physiology Journal, 2015, 51(4): 471-475.
[7]
Chukwujekwu J C, Fennell C W, Van Staden J, et al.Optimisation of the tissue culture protocol for the endangered Aloe polyphylla. South African Journal of Botany, 2002, 68(4): 424-429.
[8]
程文亮, 吴华芬, 刘南祥, 等. 绒叶斑叶兰的组织培养初探. 园艺学报, 2010, 37(增刊): 2196.
Cheng W L, Wu H F, Liu N X, et al.Preliminary Study on Tissue Culture of Goodyera velutina Maxim. Acta Horticulturae Sinica, 2010,37(Suppl): 2196.
[9]
付志惠, 李洪林, 张建霞, 等. 斑叶兰的组织培养. 植物生理学通讯, 2006, 42(3): 480.
Fu Z H, Li H L, Zhang J X, et al.Tissure Culture of Goodyera schlechtendaliana Rchh. f. Plant Physiology Journal,2006, 42(3): 480.
[10]
高丽, 李洪林, 杨波. 高斑叶兰的组织培养. 植物生理学通讯, 2007, 43(3): 505.
Gao L, Li H L, Yang B.Tissure Culture of Goodyera procera (Ker-Gawl.) Hook.Plant Physiology Journal,2007, 43(3): 505.
[11]
Yang Z, Wafula E K, Honaas L A, et al.Comparative transcriptome analyses reveal core parasitism genes and suggest gene duplication and repurposing as sources of structural novelty. Molecular Biology and Evolution, 2015, 32(3): 767-790.
The origin of novel traits is recognized as an important process underlying many major evolutionary radiations. We studied the genetic basis for the evolution of haustoria, the novel feeding organs of parasitic flowering plants, using comparative transcriptome sequencing in three species of Orobanchaceae. Around 180 genes are upregulated during haustorial development following host attachment in at least two species, and these are enriched in proteases, cell wall modifying enzymes, and extracellular secretion proteins. Additionally, about 100 shared genes are upregulated in response to haustorium inducing factors prior to host attachment. Collectively, we refer to these newly identified genes as putative -arasitism genes.- Most of these parasitism genes are derived from gene duplications in a common ancestor of Orobanchaceae and Mimulus guttatus, a related nonparasitic plant. Additionally, the signature of relaxed purifying selection and/or adaptive evolution at specific sites was detected in many haustorial genes, and may play an important role in parasite evolution. Comparative analysis of gene expression patterns in parasitic and nonparasitic angiosperms suggests that parasitism genes are derived primarily from root and floral tissues, but with some genes co-opted from other tissues. Gene duplication, often taking place in a nonparasitic ancestor of Orobanchaceae, followed by regulatory neofunctionalization, was an important process in the origin of parasitic haustoria.
[12]
Mutz K, Heilkenbrinker A, Lonne M, et al.Transcriptome analysis using next-generation sequencing. Current Opinion in Biotechnology, 2013, 24(1): 22-30.
Up to date research in biology, biotechnology, and medicine requires fast genome and transcriptome analysis technologies for the investigation of cellular state, physiology, and activity. Here, microarray technology and next generation sequencing of transcripts (RNA-Seq) are state of the art. Since microarray technology is limited towards the amount of RNA, the quantification of transcript levels and the sequence information, RNA-Seq provides nearly unlimited possibilities in modern bioanalysis. This chapter presents a detailed description of next-generation sequencing (NGS), describes the impact of this technology on transcriptome analysis and explains its possibilities to explore the modern RNA world.
[13]
Seaver S M, Gerdes S, Frelin O, et al.High-throughput comparison, functional annotation, and metabolic modeling of plant genomes using the PlantSEED resource. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(26): 9645-9650.
The increasing number of sequenced plant genomes is placing new demands on the methods applied to analyze, annotate, and model these genomes. Today's annotation pipelines result in inconsistent gene assignments that complicate comparative analyses and prevent efficient construction of metabolic models. To overcome these problems, we have developed the PlantSEED, an integrated, metabolism-centric database to support subsystems-based annotation and metabolic model reconstruction for plant genomes. PlantSEED combines SEED subsystems technology, first developed for microbial genomes, with refined protein families and biochemical data to assign fully consistent functional annotations to orthologous genes, particularly those encoding primary metabolic pathways. Seamless integration with its parent, the prokaryotic SEED database, makes PlantSEED a unique environment for cross-kingdom comparative analysis of plant and bacterial genomes. The consistent annotations imposed by PlantSEED permit rapid reconstruction and modeling of primary metabolism for all plant genomes in the database. This feature opens the unique possibility of model-based assessment of the completeness and accuracy of gene annotation and thus allows computational identification of genes and pathways that are restricted to certain genomes or need better curation. We demonstrate the PlantSEED system by producing consistent annotations for 10 reference genomes. We also produce a functioning metabolic model for each genome, gapfilling to identify missing annotations and proposing gene candidates for missing annotations. Models are built around an extended biomass composition representing the most comprehensive published to date. To our knowledge, our models are the first to be published for seven of the genomes analyzed.
[14]
Van Dijk E, Auger H, Jaszczyszyn Y, et al.Ten years of next-generation sequencing technology. Trends in Genetics, 2014, 30(9): 418-426.
Ten years ago next-generation sequencing (NGS) technologies appeared on the market. During the past decade, tremendous progress has been made in terms of speed, read length, and throughput, along with a sharp reduction in per-base cost. Together, these advances democratized NGS and paved the way for the development of a large number of novel NGS applications in basic science as well as in translational research areas such as clinical diagnostics, agrigenomics, and forensic science. Here we provide an overview of the evolution of NGS and discuss the most significant improvements in sequencing technologies and library preparation protocols. We also explore the current landscape of NGS applications and provide a perspective for future developments.
[15]
张超, 张茜茜, 楼楠男,等. 有机添加物对大花蕙兰原球茎及幼苗生长发育的影响. 安徽农业科学, 2009, 35(19): 8866-8868.
Zhang C, Zhang Q Q, Lou N N, et al.Effects of the organic additives on protocorm and seedling growth of Cymbidium. Journal of Anhui Agricultural Sciences, 2009, 35(19): 8866-8868.
[16]
Yan L, Wang X, Liu H, et al.The genome of dendrobium officinale illuminates the biology of the important traditional Chinese orchid herb. Molecular Plant, 2015, 8(6): 922-934.
We report the first de novo assembled 1.35 Gb genome sequences for Dendrobium officinale. We found that D.02officinale has a complete inflorescence gene set and obvious gene expansion in gene families related to environmental adaptation. We further analyzed the biosynthetic pathways of medicinal components of D.02Officinale, which may be used for genetic breeding of the dendrobe.
[17]
Huang J, Lin C, Cheng T, et al.The genome and transcriptome of Phalaenopsis yield insights into floral organ development and flowering regulation. PeerJ, 2016.
ThePhalaenopsisorchid is an important potted flower of high economic value around the world. We report the 3.1 Gb draft genome assembly of an important winter floweringPhalaenopsis‘KHM190’ cultivar. We generated 89.5 Gb RNA-seq and 113 million sRNA-seq reads to use these data to identify 41,153 protein-coding genes and 188 miRNA families. We also generated a draft genome forPhalaenopsis pulcherrima‘B8802,’ a summer flowering species, via resequencing. Comparison of genome data between the twoPhalaenopsiscultivars allowed the identification of 691,532 single-nucleotide polymorphisms. In this study, we reveal that the key role ofPhAGL6bin the regulation of labellum organ development involves alternative splicing in the big lip mutant. Petal or sepal overexpressingPhAGL6bleads to the conversion into a lip-like structure. We also discovered that the gibberellin pathway that regulates the expression of flowering time genes during the reproductive phase change is induced by cool temperature. Our work thus depicted a valuable resource for the flowering control, flower architecture development, and breeding of thePhalaenopsisorchids.
[18]
Cai J, Liu X, Vanneste K, et al.The genome sequence of the orchid Phalaenopsis equestris. Nature Genetics, 2015, 47(1): 65-72.

Footnotes

The authors have declared that no competing interests exist.

作者已声明无竞争性利益关系。

RIGHTS & PERMISSIONS

Copyright reserved © 2018. Office of China Biotechnology.
PDF(1539 KB)

1397

Accesses

0

Citation

Detail

Sections
Recommended

/