Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (12): 57-64    DOI: 10.13523/j.cb.20181208
Orginal Article     
Establishment of an Efficient Regeneration System in Goodyera foliosa and Comprehensive Analysis of Functionally Regulated Genes Involved in Developmental Regulatory Pathways Based on Transcriptome Analysis
HE Guan-rong1,HE Bi-zhu2,WU Sha-sha2,SHI Jing-shan3,CHEN Ji-shuang3,**(),LAN Si-ren2,**()
1 College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002,China
2 The Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization,Fujian Agriculture and Forestry University, Fuzhou 350002, China
3 Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi 563000, China
Download: HTML   PDF(1539KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Goodyera foliosa, belonged to the genus of Cymbidium, is an endangered wild and national secondary protected plant which is used as ornamental plants and for various medicinal purposes. Duo to its small distribution population and weak transmission and diffusion, the natural reproduction is greatly limited. In this study, a high efficient in vitro regeneration system was developed from stem explants of Goodyera foliosa. The functional genes involved in the morphogenesis development was deeply explored by integrating with high-throughput transcriptome sequencing and bioinformatics analysis technology. For shoot-inducing , the optical culture medium is Morel + 2.0 mg/L 6-BA + 0.5 mg/L KT+1.0 mg/L NAA + 1g/L peptone + 25g/L sucrose + 7.0 g/L Agar + 1.0 g/L active carbon + 30 g/L banana + 50 g/L potato. The optical culture medium for bud proliferation is Morel + 3 mg/L 6-BA + 0.5 mg/L NAA + 0.5 mg/L KT + 0.01 mg/L TDZ + 2g/L peptone + 25g/L sucrose + 7.0 g/L Agar + 1.0 g/L active carbon + 30g/L banana + 50g/L potato. On the rooting medium with 1/2 Morel + 1.0 mg/L IBA + 0.1 mg/L NAA + 1 g/L + Hyponex NO.2 + 25g/L sucrose + 7.0g/L Agar + 1.0 g/L active carbon + 1g/L peptone. After transcriptom sequencing and assembling, 170, 688 Unigenes were obtained. The average length and N50 length of Unigenes was 584bp and 833bp respectively. Total of 17, 352 Unigenes were completely annotated to 5 functional databases including NR, Swiss-Prot, KOG, GO and KEGG. The functional analysis of differential Unigenes was showed that hormone signal transduction, plant development, secondary metabolites and energy metabolism were significantly enriched. Moreover, 511 Unigene encoding transcription factors involved with plant organ developmental regulation were predicted. Conclusion, a comprehensive transcriptom landscape of Goodyera foliosa was described by integrating with a high efficient in vitro regeneration system and next high-throughput trancriptom sequencing. This work could provide certain reference for fast propagation, genetic transformation, functional gene mining and development mechanism research of Goodyera foliosa.



Key wordsGoodyera foliosa (Lindl) Benth.      Bioresource conservation      Seedling regeneration Organ development      Transcriptome analysis     
Received: 30 November 2018      Published: 10 January 2019
ZTFLH:  Q78  
Corresponding Authors: Ji-shuang CHEN,Si-ren LAN     E-mail: biochenjs@njtech.edu.cn;lkzx@fafu.edu.cn
Cite this article:

HE Guan-rong,HE Bi-zhu,WU Sha-sha,SHI Jing-shan,CHEN Ji-shuang,LAN Si-ren. Establishment of an Efficient Regeneration System in Goodyera foliosa and Comprehensive Analysis of Functionally Regulated Genes Involved in Developmental Regulatory Pathways Based on Transcriptome Analysis. China Biotechnology, 2018, 38(12): 57-64.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20181208     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I12/57

6-BA激素配比
6-BA (mg/L)
外植体数
Number of explants
增殖倍数
Proliferation rate
生长态势
Growth situation
1.0502.22±0.03c芽少,细弱,生长慢
1.5502.61±0.02b芽多,壮实,生长块
2.0503.21±0.03a芽多,壮实,生长块
2.5502.11±0.03d芽少,壮实,生长慢
3.0501.40±0.03e芽少,细弱,生长慢
Table 1 Effect of 6-BA on inducing multiple shoots
NAA激素配比
NAA (mg/L)
增殖倍数
Proliferation rate
生长态势
Growth situation
0.10.92±0.02e少量芽、稍绿、长势弱
0.51.61±0.02d少量芽、稍绿、长势弱
1.02.34±0.04b芽健壮、浓绿、生长正常
1.52.80±0.03a芽健壮、浓绿、生长正常
2.02.10±0.03c芽健壮、绿、生长弱
Table 2 Effect of NAA on bud multiplication
IBA激素配比
IBA(mg/L)
株数
Number of seedlings
生根数
Root number
平均根长
Mean length of root
0.55031.20±1.60b1.92±0.02c
1.05038.23±0.18a2.63±0.03a
1.55029.93±0.18b2.10±0.01b
2.05024.00±0.21c1.61±0.02d
2.55020.13±0.23d1.39±0.01e
Table 3 Effect of IBA levels on shoot rooting of the plantlet
Fig.1 Length distribution of Unigenes
Fig.2 Veen diagram of annotated Unigenes
Fig.3 GO function analysis of differential expressed Unigenes
Fig.4 KEGG function analysis of differential expressed Unigenes
[1]   郎楷永, 陈心启, 罗毅波. 中国植物志, 第17 卷第1 分册. 北京: 科学出版社, 1999, 17(1): 142-143.
[1]   Lang K Y, Chen X Q, Luo Y B.Flora Reipublicae Popularis Sinicae, Tomus. Beijing: Science Press, 1999, 17(1): 1421-143.
[2]   范志刚, 孔令杰, 彭德镇, 等. 齐云山自然保护区兰科植物资源分布及其区系特点. 热带亚热带植物学报, 2011, 19(2): 159-165.
[2]   Fan Z G, Kong L J, Peng D Z, et al.Distribution and floristic characteristics of wild orchids in Qiyunshan nature reserve. Journal of Tropical and Subtropical Botany, 2011, 19(2): 159-165.
[3]   查兆兵, 唐静, 梁跃龙, 等. 多叶斑叶兰繁育系统与传生物学研究. 热带亚热带植物学报, 2016, 24(3): 333-341.
[3]   Zha Z B, Tang J, Liang Y L, et al.Breeding system and pollination biology of goodyera foliosa (Orchidaceae). Journal of Tropical and Subtropical Botany, 2011, 19(2): 159-165.
[4]   吴安湘, 金晓玲, 熊芳. 珍稀濒危植物组织培养研究进展. 西北植物学报, 2006, 26(1): 0211-0216.
[4]   Wu A X, Jin X L, Xiong L.Research advances about tissue culture of endangered plants in China. Acta Botanica Boreali-Occidentalia Sinica, 2011, 19(2): 159-165.
[5]   程明, 李厚华, 和子森, 等. 濒危植物羽叶丁香组织培养. 北方园艺, 2016, 12: 92-96.
[5]   Cheng M, Li H H, He Z S,et al.Tissue culture of endangered plant Syringa pinnatifolia. Northern Horticulture, 2016, 12: 92-96.
[6]   张艳玲, 唐澄莹, 何夫, 等. 珍稀濒危植物北碚榕的组培快繁. 植物生理学报, 2015, 51(4): 471-475.
[6]   Zhang Y L, Tang D Y, He F, et al.Tissue culture and rapid propagation of rare and endangered ficus beipeiensis. Plant Physiology Journal, 2015, 51(4): 471-475.
[7]   Chukwujekwu J C, Fennell C W, Van Staden J, et al.Optimisation of the tissue culture protocol for the endangered Aloe polyphylla. South African Journal of Botany, 2002, 68(4): 424-429.
[8]   程文亮, 吴华芬, 刘南祥, 等. 绒叶斑叶兰的组织培养初探. 园艺学报, 2010, 37(增刊): 2196.
[8]   Cheng W L, Wu H F, Liu N X, et al.Preliminary Study on Tissue Culture of Goodyera velutina Maxim. Acta Horticulturae Sinica, 2010,37(Suppl): 2196.
[9]   付志惠, 李洪林, 张建霞, 等. 斑叶兰的组织培养. 植物生理学通讯, 2006, 42(3): 480.
[9]   Fu Z H, Li H L, Zhang J X, et al.Tissure Culture of Goodyera schlechtendaliana Rchh. f. Plant Physiology Journal,2006, 42(3): 480.
[10]   高丽, 李洪林, 杨波. 高斑叶兰的组织培养. 植物生理学通讯, 2007, 43(3): 505.
[10]   Gao L, Li H L, Yang B.Tissure Culture of Goodyera procera (Ker-Gawl.) Hook.Plant Physiology Journal,2007, 43(3): 505.
[11]   Yang Z, Wafula E K, Honaas L A, et al.Comparative transcriptome analyses reveal core parasitism genes and suggest gene duplication and repurposing as sources of structural novelty. Molecular Biology and Evolution, 2015, 32(3): 767-790.
doi: 10.1093/molbev/msu343 pmid: 4327159
[12]   Mutz K, Heilkenbrinker A, Lonne M, et al.Transcriptome analysis using next-generation sequencing. Current Opinion in Biotechnology, 2013, 24(1): 22-30.
doi: 10.1016/j.copbio.2012.09.004 pmid: 23020966
[13]   Seaver S M, Gerdes S, Frelin O, et al.High-throughput comparison, functional annotation, and metabolic modeling of plant genomes using the PlantSEED resource. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(26): 9645-9650.
doi: 10.1073/pnas.1401329111
[14]   Van Dijk E, Auger H, Jaszczyszyn Y, et al.Ten years of next-generation sequencing technology. Trends in Genetics, 2014, 30(9): 418-426.
doi: 10.1016/j.tig.2014.07.001 pmid: 25108476
[15]   张超, 张茜茜, 楼楠男,等. 有机添加物对大花蕙兰原球茎及幼苗生长发育的影响. 安徽农业科学, 2009, 35(19): 8866-8868.
[15]   Zhang C, Zhang Q Q, Lou N N, et al.Effects of the organic additives on protocorm and seedling growth of Cymbidium. Journal of Anhui Agricultural Sciences, 2009, 35(19): 8866-8868.
[16]   Yan L, Wang X, Liu H, et al.The genome of dendrobium officinale illuminates the biology of the important traditional Chinese orchid herb. Molecular Plant, 2015, 8(6): 922-934.
doi: 10.1016/j.molp.2014.12.011 pmid: 25825286
[17]   Huang J, Lin C, Cheng T, et al.The genome and transcriptome of Phalaenopsis yield insights into floral organ development and flowering regulation. PeerJ, 2016.
doi: 10.7717/peerj.2017 pmid: 4868593
[18]   Cai J, Liu X, Vanneste K, et al.The genome sequence of the orchid Phalaenopsis equestris. Nature Genetics, 2015, 47(1): 65-72.
[1] CHEN Xin-jie,QIAN Zhi-lan,LIU Qi,ZHAO Qing,ZHANG Yuan-xing,CAI Meng-hao. Modification of Aromatic Amino Acid Synthetic Pathway in Pichia pastoris to Produce Cinnamic Acid and ρ-Coumaric Acid[J]. China Biotechnology, 2021, 41(10): 52-61.
[2] WANG Wei-dong,DU Jia-ru,ZHANG Yun-shang,FAN Jian-ming. The Application of CRISPR/Cas9 in the Treatment of Human Virus Infection-Related Diseases[J]. China Biotechnology, 2020, 40(12): 18-24.
[3] XU Ying-yong. Current Status and Challenges of Gene Therapy Products[J]. China Biotechnology, 2020, 40(12): 95-103.
[4] WANG Yue,MU Yan-shuang,LIU Zhong-hua. Progress of CRISPR/Cas Base Editing System[J]. China Biotechnology, 2020, 40(12): 58-66.
[5] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[6] XUE Rui,YAO Lin,WANG Rui,LUO Zheng-shan,XU Hong,LI Sha. Advances and Applications of Recombinant Mussel Foot Proteins[J]. China Biotechnology, 2020, 40(11): 82-89.
[7] CHEN Qing-yu,WANG Xian-zhong,ZHANG Jiao-jiao. Application of Gene Technology in the Treatment of Type 2 Diabetes Mellitus[J]. China Biotechnology, 2020, 40(11): 73-81.
[8] HE Xiu-juan,HU Feng-zhi,LIU Qiu-li,LIU Yu-ping,ZHU Ling,ZHENG Wen-yun. CRISPR / Cas9 Gene Editing of QSOX1 in Breast Cancer Cells and Its Effect on the Proliferation and Invasion[J]. China Biotechnology, 2020, 40(11): 1-9.
[9] LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng. Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay[J]. China Biotechnology, 2020, 40(8): 41-48.
[10] ZHANG Bao-hui,XIONG Hua-long,ZHANG Tian-ying,YUAN Quan. Research Progress on Vesicular Stomatitis Virus-based Oncolytic Virotherapy[J]. China Biotechnology, 2020, 40(6): 53-62.
[11] WU Rui-jun,LI Zhi-fei,ZHANG Xin,PU Run,AO Yi,SUN Yan-rong. Development and Prospect of Antibody Drugs for SARS-CoV-2[J]. China Biotechnology, 2020, 40(5): 1-6.
[12] LIU Di,ZHANG Hong-chun. Advances in Genetically Engineered Animal Models of Chronic Obstructive Pulmonary Disease[J]. China Biotechnology, 2020, 40(4): 59-68.
[13] CHENG Ping,ZHANG Yang-zi,MA Xuan,CHEN Xu,ZHU Bao-qing,XU Wen-tao. Properties and Applications of Stimuli-Responsive DNA Hydrogels[J]. China Biotechnology, 2020, 40(3): 132-143.
[14] GUO Sheng-nan, LI Xin-xiao, WANG Feng, LIU Kun-mei, DING Na, HU Qi-kuan, SUN Tao. Establishment and Identification of the Neocortex and Hippocampus GABRG2 Knockout Mice and Its Preliminary Study in Generalized Epilepsy with Febrile Seizures Plus[J]. China Biotechnology, 2020, 40(3): 9-20.
[15] GUO Jing,HOU Zhan-ming. Folpcs1 Is Responsible for Asexual Reproduction and Vegetative Growth in Fusarium oxysporum f. sp. Lini.[J]. China Biotechnology, 2020, 40(3): 48-64.