Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (8): 63-71    DOI: 10.13523/j.cb.2211008
    
Determination of Absolute Telomere Length in Cattle and the Effect of DNA Extraction
BAO Li-wen1**(),CAI Qin1**,ZHOU Yi-ye1,2,3,XU Miao1,3,SHU Juan1,3,LI Hua1,3,LI Hong-yu1,3,ZENG Yi-tao1,3,ZENG Fanyi1,2,3,***()
1 Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China
2 Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
3 Key Laboratory of Embryo Molecular Biology, Ministry of Health and Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
Download: HTML   PDF(897KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: Telomere is a highly conserved structure at the end of eukaryotic chromosomes responsible for maintaining chromosomal stability, and the length of its DNA sequence, known as telomere length, gradually shortens with age or disease development. Telomere length can provide a reference for assessing the aging and health status of individuals. However, there is no satisfactory method for determining the absolute telomere length from a small amount of cattle samples. Real-time quantitative PCR (qPCR) was used to determine the absolute telomere length of minute DNA samples from cows and to assess the effect of the DNA extraction method on the results of absolute telomere length determination. This study aims to provide a reference for selecting suitable DNA extraction methods and telomere length analysis methods for a study on telomere length in cattle. Methods: The absolute values of telomere length were determined by qPCR. DNA was extracted from the same samples with silica membrane, phenol-chloroform, and magnetic beads, and the telomere lengths were analyzed by terminal restriction fragment (TRF) assay and qPCR, respectively, to compare their effect on cattle absolute telomere length determination. Results: (1) qPCR can be used to determine the absolute telomere length of nano-gram level cow DNA samples with good reproducibility and correlates well with the “gold standard” TRF results. (2) DNA extracted by different methods would result in significant differences in results when used for telomere length analysis. DNA extracted by the magnetic bead method showed the best agreement when telomere length was measured by TRF and qPCR methods. Conclusion: qPCR is a more sensitive, convenient, and rapid method for determining absolute telomere length than the TRF method and is suitable for determining minute DNA samples. The DNA extraction method can affect the results of telomere length determination and should be unified while the assay was performed, and the magnetic bead method was optimal.



Key wordsTelomere length      qPCR      TRF      DNA extraction methods     
Received: 07 November 2022      Published: 05 September 2023
ZTFLH:  Q789  
Cite this article:

BAO Li-wen, CAI Qin, ZHOU Yi-ye, XU Miao, SHU Juan, LI Hua, LI Hong-yu, ZENG Yi-tao, ZENG Fanyi. Determination of Absolute Telomere Length in Cattle and the Effect of DNA Extraction. China Biotechnology, 2023, 43(8): 63-71.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2211008     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I8/63

Fig.1 Standard curves used to calculate absolute telomere length (a) Standard curve for calculating telomere length of per reaction tube (b) Standard curve for calculating ZAR1 copy number
Fig.2 Comparison of the results of telomere length determination in cow ear skin at different ages by qPCR Each point in the graph represents the telomere length of ear skin sample in each cow. Data are expressed as mean ± standard deviation (mean ± SD).* P<0.05;** P<0.01;*** P<0.001
Fig.3 Reproducibility of telomere length measured by qPCR Each point in the graph represents one sample
序号 端粒检测方法 TRF qPCR
1 需要DNA量/μg ≥4 0.12
2 耗时/h(1) 120[18] 5
3 灵敏度(检测下限)/ kb 约2 [17] 约0.16
4 组内变异系数(2)(端粒&内参)/% NA 1.48 & 0.86
5 批间变异系数(3)(n=26(4))/% <2[18] 6.06
6 对DNA完整性的依赖程度
Table 1 Comparison of the TRF and qPCR methods for telomere length determination
样本编号 年龄/岁 分组
1 0.77 低龄组
2 0.73 低龄组
3 1.28 低龄组
4 1.07 低龄组
5 12.00 高龄组
6 12.00 高龄组
7 11.00 高龄组
8 11.00 高龄组
9 0.04 低龄组
10 1.87 低龄组
Table 2 Information of cow ear skin biopsy
序号 提取方法(组别) M1 M2 M3
1 初始组织样本数 10 10 10
2 平均起始组织量/(mg/份) 63.55±3.86a 63.52±3.89a 61.17±2.74a
3 平均DNA回收量/(μg/份) 34.87±17.12a 122.09±29.77b 33.34±6.44a
4 DNA质量合格样本数(1) 10 9(2) 8(2)
5 DNA完整性评分=1分的样本数(1) 0 6 8
Table 3 Comparison of three different DNA extraction methods
Fig.4 Integrity characterization of DNA extracted by different methods
Fig.5 Telomere length determined by TRF and qPCR (a) Results of TRF assay (b) Comparison of the results of telomere length determination by TRF assay (c) Comparison of the results of telomere length determination by qPCR. Three groups of DNA were obtained by three DNA extraction methods; M1: Silica membrane method; M2: Phenol-chloroform method; M3: Magnetic beads method. Data are expressed as mean ± standard deviation (mean ± SD). * P<0.05;** P<0.01;*** P<0.001
Fig.6 Correlation between TRF results and aTL Each point in the graph represents one sample. M1: Silica membrane method; M2: Phenol-chloroform method; M3: Magnetic beads method
[1]   Chakravarti D, LaBella K A, DePinho R A. Telomeres: history, health, and hallmarks of aging. Cell, 2021, 184(2): 306-322.
doi: 10.1016/j.cell.2020.12.028 pmid: 33450206
[2]   Zhu Y K, Liu X W, Ding X L, et al. Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology, 2019, 20(1): 1-16.
doi: 10.1007/s10522-018-9769-1 pmid: 30229407
[3]   Samiec M, Skrzyszowska M. Extranuclear inheritance of mitochondrial genome and epigenetic reprogrammability of chromosomal telomeres in somatic cell cloning of mammals. International Journal of Molecular Sciences, 2021, 22(6): 3099.
doi: 10.3390/ijms22063099
[4]   Meyne J, Ratliff R L, Moyzis R K. Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(18): 7049-7053.
[5]   Srinivas N, Rachakonda S, Kumar R. Telomeres and telomere length: a general overview. Cancers, 2020, 12(3): 558.
doi: 10.3390/cancers12030558
[6]   Shay J W, Wright W E. Telomeres and telomerase: three decades of progress. Nature Reviews Genetics, 2019, 20(5): 299-309.
doi: 10.1038/s41576-019-0099-1 pmid: 30760854
[7]   Lee J J, Lee J, Lee H. Alternative paths to telomere elongation. Seminars in Cell & Developmental Biology, 2021, 113: 88-96.
[8]   Olovnikov A M. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. Journal of Theoretical Biology, 1973, 41(1): 181-190.
pmid: 4754905
[9]   Bandaria J, Qin P W, Berk V, et al. Shelterin protects chromosome ends by compacting telomeric chromatin. Cell, 2016, 164(4): 735-746.
doi: 10.1016/j.cell.2016.01.036 pmid: 26871633
[10]   Schmutz I, de Lange T. Shelterin. Current Biology, 2016, 26(10): R397-R399.
doi: 10.1016/j.cub.2016.01.056
[11]   Ruis P, Van Ly D, Borel V, et al. TRF2-independent chromosome end protection during pluripotency. Nature, 2021, 589(7840): 103-109.
doi: 10.1038/s41586-020-2960-y
[12]   Lazzerini-Denchi E, Sfeir A. Stop pulling my strings:what telomeres taught us about the DNA damage response. Nature Reviews Molecular Cell Biology, 2016, 17(6): 364-378.
doi: 10.1038/nrm.2016.43 pmid: 27165790
[13]   Yang L, Liu X F, Song L S, et al. Inhibiting repressive epigenetic modification promotes telomere rejuvenation in somatic cell reprogramming. The FASEB Journal, 2019, 33(12): 13982-13997.
doi: 10.1096/fsb2.v33.12
[14]   Gilchrist G, Kurjanowicz P, Mereilles F, et al. Telomere length and telomerase activity in bovine pre-implantation embryos in vitro. Reproduction in Domestic Animals, 2015, 50(1): 58-67.
doi: 10.1111/rda.12449 pmid: 25469445
[15]   Schaetzlein S, Lucas-Hahn A, Lemme E, et al. Telomere length is reset during early mammalian embryogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(21): 8034-8038.
[16]   Liu L, Bailey S M, Okuka M, et al. Telomere lengthening early in development. Nature Cell Biology, 2007, 9(12): 1436-1441.
pmid: 17982445
[17]   Lai T P, Wright W E, Shay J W. Comparison of telomere length measurement methods. Philosophical TRansactions of the Royal Society of London Series B: Biological Sciences. 2018, 373(1741): 20160451.
[18]   Kimura M, Stone R C, Hunt S C, et al. Measurement of telomere length by the Southern blot analysis of terminal restriction fragment lengths. Nature Protocols, 2010, 5(9): 1596-1607.
doi: 10.1038/nprot.2010.124 pmid: 21085125
[19]   Cawthon R M. Telomere measurement by quantitative PCR. Nucleic Acids Research, 2002, 30(10): e47.
doi: 10.1093/nar/30.10.e47 pmid: 12000852
[20]   吕昆, 林丹, 许淼, 等. 应用实时荧光定量PCR测定牛体细胞端粒长度. 中国畜牧兽医, 2010, 37(9):154-158.
[20]   Lv K, Lin D, Xu M, et al. Bovine somatic cell telomere length measurement by quantitative PCR. China Animal Husbandry & Veterinary Medicine, 2010, 37(9):154-158.
[21]   O’Callaghan N J, Dhillon V S, Thomas P, et al. A quantitative real-time PCR method for absolute telomere length. BioTechniques, 2008, 44(6): 807-809.
doi: 10.2144/000112761 pmid: 18476834
[22]   O’Callaghan N J, Fenech M. A quantitative PCR method for measuring absolute telomere length. Biological Procedures Online, 2011, 13(1): 1-10.
doi: 10.1186/1480-9222-13-1
[23]   Seeker L A, Holland R, Underwood S, et al. Method specific calibration corrects for DNA extraction method effects on relative telomere length measurements by quantitative PCR. PLoS One, 2016, 11(10): e0164046.
doi: 10.1371/journal.pone.0164046
[24]   Hu H, Wang J Q, Bu D P, et al. In vitro culture and characterization of a mammary epithelial cell line from Chinese Holstein dairy cow. PLoS One, 2009, 4(11): e7636.
doi: 10.1371/journal.pone.0007636
[25]   Gallagher D S, Womack J E. Chromosome conservation in the Bovidae. Journal of Heredity, 1992, 83(4): 287-298.
pmid: 1401875
[26]   Kin A, Kansaku K, Sumiya M, et al. Effect of aging on telomere lengths in bovine oocytes and granulosa cells. Journal of Mammalian Ova Research, 2017, 34(1): 37-43.
doi: 10.1274/032.034.0101
[27]   Raschenberger J, Lamina C, Haun M, et al. Influence of DNA extraction methods on relative telomere length measurements and its impact on epidemiological studies. Scientific Reports, 2016, 6(1): 1-10.
doi: 10.1038/s41598-016-0001-8
[28]   Denham J, Marques F Z, Charchar F J. Leukocyte telomere length variation due to DNA extraction method. BMC Research Notes, 2014, 7(1): 1-6.
doi: 10.1186/1756-0500-7-1
[29]   Cunningham J M, Johnson R A, Litzelman K, et al. Telomere length varies by DNA extraction method:implications for epidemiologic research. Cancer Epidemiology, Biomarkers & Prevention:A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology, 2013, 22(11): 2047-2054.
[30]   Hofmann J N, Hutchinson A A, Cawthon R, et al. Telomere length varies by DNA extraction method:implications for epidemiologic research-letter. Cancer Epidemiology, Biomarkers & Prevention:a Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology, 2014, 23(6): 1129-1130.
[31]   Tolios A, Teupser D, Holdt L M. Preanalytical conditions and DNA isolation methods affect telomere length quantification in whole blood. PLoS One, 2015, 10(12): e0143889.
doi: 10.1371/journal.pone.0143889
[1] ZHANG Ya-qi, ZHANG Jian, TANG Yu-ting, HUANG Qing-yuan, JI Lu, LU Chen, LUO Zhi-dan. Warm-start One-step RT-qPCR by Aptamer-blocking Tth DNA Polymerase Mutant[J]. China Biotechnology, 2023, 43(4): 51-58.
[2] Yuan FAN,Jia LUO,Mai-lin GAN,Ya TAN,Shun-hua ZHANG,Li ZHU. The Research Advance of Long Non-coding RNA TERRA[J]. China Biotechnology, 2018, 38(10): 64-73.
[3] Jin ZHANG,Dan SI,Zhi-bang YANG,Yu-xia XIONG,Lian-ju MA,Jin-yang LI,Ren-ju JIANG. Study on New Genes Associated with Dexamethasone Degradation[J]. China Biotechnology, 2018, 38(1): 15-24.
[4] CHEN Xin, ZENG Chang-ying, LU Cheng, WANG Wen-quan. miRNA Quantification Methods Basing on PCR Technique[J]. China Biotechnology, 2010, 30(11): 88-93.
[5] MA Jun-yan, LIN Jun. To Normalize the Using of Quantitative Real-time Reverse Transcription PCR[J]. China Biotechnology, 2010, 30(10): 55-59.
[6] . To normalize the using of quantitative real-time reverse transcription PCR[J]. China Biotechnology, 2010, 30(10): 0-0.