Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (4): 51-58    DOI: 10.13523/j.cb.2211014
    
Warm-start One-step RT-qPCR by Aptamer-blocking Tth DNA Polymerase Mutant
ZHANG Ya-qi,ZHANG Jian,TANG Yu-ting,HUANG Qing-yuan,JI Lu,LU Chen,LUO Zhi-dan()
Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
Download: HTML   PDF(2072KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: Tth DNA polymerase (Tth pol) is a thermostable polymerase with both DNA polymerase and reverse transcriptase activities. To control the non-specific amplification in the one-step reverse transcription-quantitative real-time PCR (RT-qPCR), the aptamers that inhibit the activity of Tth pol mutant at moderate temperature were screened to perform warm-start one-step RT-qPCR. Methods: Based on the Mn2+-independent Tth pol mutant obtained in previous study, the effects of four DNA aptamers and their corresponding RNA aptamers on the inhibition of DNA polymerase and reverse transcriptase activity of this Tth pol mutant and the dissociation temperature were examined. The binding poses between these aptamers and Tth pol mutant were simulated by molecular docking. Results: Two aptamers TQ21-11 and TQ21-11-RNA can block two distinct activities of Tth pol at 40℃ with inhibition rates of over 97% and all of them can be almost completely dissociated at 50℃. Both aptamers were validated for warm-start one-step RT-qPCR, with lower non-specific amplification of TQ21-11-RNA. Conclusion: The aptamers TQ21-11 and TQ21-11-RNA were able to effectively block the activity of Tth pol mutant at moderate temperature and perform warm-start one-step RT-qPCR well.



Key wordsAptamer      Tth      DNA polymerase mutant      Warm-start      One-step RT-qPCR     
Received: 08 November 2022      Published: 04 May 2023
ZTFLH:  Q78  
Cite this article:

ZHANG Ya-qi, ZHANG Jian, TANG Yu-ting, HUANG Qing-yuan, JI Lu, LU Chen, LUO Zhi-dan. Warm-start One-step RT-qPCR by Aptamer-blocking Tth DNA Polymerase Mutant. China Biotechnology, 2023, 43(4): 51-58.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2211014     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I4/51

名称 序列(5'-3') 长度/nt 参考文献
TQ21 TTCTCGGTTGGTCTCTGGCGGAGCGATCATCTCAGAGCATTCTTAGCGTTTTGTTCTTGTGTAT
GATTCGCTTTTCCC
78 [12]
TQ21-RNA UUCUCGGUUGGUCUCUGGCGGAGCGAUCAUCUCAGAGCAUUCUUAGCGUUUUGUUCUUGU
GUAUGAUUCGCUUUUCCC
78 -
Trnc-21 TGGCGGAGCGATCATCTCAGAGCATTCTTAGCGTTTTGTTCTTGTGTATGA 51 [15]
Trnc-21-RNA UGGCGGAGCGAUCAUCUCAGAGCAUUCUUAGCGUUUUGUUCUUGUGUAUGA 51 -
TQ21-11 GCGGTCGGCTCGGGGCATTCTTAGCGTTTTGCCCCGAGCCGACCGC 46 [16]
TQ21-11-RNA GCGGUCGGCUCGGGGCAUUCUUAGCGUUUUGCCCCGAGCCGACCGC 46 -
6-10 CAAGACGGGCGGGTGTGGTAGGCGCCCGTG 30 [17]
6-10-RNA CAAGACGGGCGGGUGUGGUAGGCGCCCGUG 30 -
Table 1 Nucleic acid adapter sequences
Fig.1 Amplification curves of each aptamer with Tth DNA polymerase mutant at 35°C for 1 h (a) TQ21 (b) TQ21-RNA (c) Trnc-21 (d) Trnc-21-RNA (e) TQ21-11 (f) TQ21-11-RNA (g) 6-10 (h) 6-10-RNA
Fig.2 Inhibition rate of DNA polymerase activity of Tth DNA polymerase mutant by each aptamer after reaction for 1 h at four temperatures (a) At 35℃ (b) At 40℃ (c) At 45℃ (d) At 50℃
Fig.3 Results of one-step RT-qPCR (a) (b) qPCR amplification curve after RT at 40℃ (c) (d) qPCR amplification curve after RT at 50℃ (e)(f) qPCR melting curve after RT at 50℃
Fig.4 Best molecular docking poses between each aptamer and Tth DNA polymerase mutant (a) TQ21 (b) TQ21-RNA (c) Trnc-21 (d) Trnc-21-RNA (e) TQ21-11 (f) TQ21-11-RNA (g) 6-10 (h) 6-10-RNA
适配体名称 HDock最佳对接分数
TQ21 -313.34
TQ21-RNA -367.85
Trnc-21 -289.71
Trnc-21-RNA -340.16
TQ21-11 -299.94
TQ21-11-RNA -362.13
6-10 -339.72
6-10-RNA -344.27
Table 2 Best docking scores of each aptamer
[1]   Carballeira N, Nazabal M, Brito J, et al. Purification of a thermostable DNA polymerase from Thermus thermophilus HB8, useful in the polymerase chain reaction. BioTechniques, 1990, 9(3): 276-281.
pmid: 2223065
[2]   Myers T W, Gelfand D H. Reverse transcription and DNA amplification by a Thermus thermophilus DNA polymerase. Biochemistry, 1991, 30(31): 7661-7666.
pmid: 1714296
[3]   Chandler D P, Wagnon C A, Bolton H Jr. Reverse transcriptase (RT) inhibition of PCR at low concentrations of template and its implications for quantitative RT-PCR. Applied and Environmental Microbiology, 1998, 64(2): 669-677.
pmid: 9464406
[4]   Suslov O, Steindler D A. PCR inhibition by reverse transcriptase leads to an overestimation of amplification efficiency. Nucleic Acids Research, 2005, 33(20): e181.
doi: 10.1093/nar/gni176 pmid: 16314311
[5]   Poddar S K, Sawyer M H, Connor J D. Effect of inhibitors in clinical specimens on Taq and Tth DNA polymerase-based PCR amplification of influenza A virus. Journal of Medical Microbiology, 1998, 47(12): 1131-1135.
pmid: 9856650
[6]   Cai D Y, Behrmann O, Hufert F, et al. Direct DNA and RNA detection from large volumes of whole human blood. Scientific Reports, 2018, 8(1): 3410.
doi: 10.1038/s41598-018-21224-0 pmid: 29467420
[7]   Cai D Y, Behrmann O, Hufert F, et al. Capacity of rTth polymerase to detect RNA in the presence of various inhibitors. PLoS One, 2018, 13(1): e0190041.
[8]   El-Deiry W S, Downey K M, So A G. Molecular mechanisms of manganese mutagenesis. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(23): 7378-7382.
[9]   Paul N, Shum J, Le T. Hot start PCR. Methods in Molecular Biology, 2010, 630: 301-318.
doi: 10.1007/978-1-60761-629-0_19 pmid: 20301005
[10]   Sharkey D J, Scalice E R, Christy K G Jr, et al. Antibodies as thermolabile switches: high temperature triggering for the polymerase chain reaction. Bio/Technology, 1994, 12(5): 506-509.
doi: 10.1038/nbt0594-506
[11]   Louwrier A, van der Valk A. Thermally reversible inactivation of Taq polymerase in an organic solvent for application in hot start PCR. Enzyme and Microbial Technology, 2005, 36(7): 947-952.
doi: 10.1016/j.enzmictec.2005.01.019
[12]   Dang C, Jayasena S D. Oligonucleotide inhibitors of Taq DNA polymerase facilitate detection of low copy number targets by PCR. Journal of Molecular Biology, 1996, 264(2): 268-278.
pmid: 8951376
[13]   Tang Y T, Chen X Y, Zhang J, et al. Generation and characterization of monoclonal antibodies against tth DNA polymerase and its application to hot-start PCR. Protein and Peptide Letters, 2021, 28(10): 1090-1098.
doi: 10.2174/0929866528666210805122117 pmid: 34353249
[14]   Zhang Y, Lai B S, Juhas M. Recent advances in aptamer discovery and applications. Molecules, 2019, 24(5): 941.
doi: 10.3390/molecules24050941
[15]   Lin Y, Jayasena S D. Inhibition of multiple thermostable DNA polymerases by a heterodimeric aptamer. Journal of Molecular Biology, 1997, 271(1): 100-111.
pmid: 9300057
[16]   Yakimovich O Y, Alekseev Y I, Maksimenko A V, et al. Influence of DNA aptamer structure on the specificity of binding to Taq DNA polymerase. Biochemistry (Moscow), 2003, 68(2): 228-235.
doi: 10.1023/A:1022609714768
[17]   Noma T, Ikebukuro K. Aptamer selection based on inhibitory activity using an evolution-mimicking algorithm. Biochemical and Biophysical Research Communications, 2006, 347(1): 226-231.
pmid: 16815302
[18]   Baek M, DiMaio F, Anishchenko I, et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science, 2021, 373(6557): 871-876.
doi: 10.1126/science.abj8754 pmid: 34282049
[19]   Eom S H, Wang J M, Steitz T A. Structure of Taq polymerase with DNA at the polymerase active site. Nature, 1996, 382(6588): 278-281.
doi: 10.1038/382278a0
[20]   Zhang Y, Wang J, Xiao Y. 3dRNA: building RNA 3D structure with improved template library. Computational and Structural Biotechnology Journal, 2020, 18: 2416-2423.
doi: 10.1016/j.csbj.2020.08.017 pmid: 33005304
[21]   Yan Y M, Tao H Y, He J H, et al. The HDOCK server for integrated protein-protein docking. Nature Protocols, 2020, 15(5): 1829-1852.
doi: 10.1038/s41596-020-0312-x pmid: 32269383
[1] YAN Zhi-chao,SONG Meng-hua,LIU Jian-ping,HUANG Qiang. Molecular Simulation-based Continuous Optimization of Nucleic-acid Aptamers Against Tetrodotoxin[J]. China Biotechnology, 2022, 42(8): 1-12.
[2] Zhi-xin YAO,Wan-ming LI. Advances in Aptamers in the Diagnosis and Treatment of Triple-negative Breast Cancer[J]. China Biotechnology, 2022, 42(7): 62-68.
[3] LIU Shao-jin,FENG Xue-jiao,WANG Jun-shu,XIAO Zheng-qiang,CHENG Ping-sheng. Market Analysis and Countermeasures of Nucleic Acid Drugs in China[J]. China Biotechnology, 2021, 41(7): 99-109.
[4] Hai-yin LV,Teng-fei WANG,Ren-jun PEI. Progress in Aptamer Based Tumor Immunotherapy[J]. China Biotechnology, 2019, 39(6): 55-61.
[5] SU Yi,JIANG Ling-li,LIN Jun-sheng. Characterization of the Affinity Between Low Molecular Weight Targets and Their Aptamers[J]. China Biotechnology, 2019, 39(11): 96-104.
[6] YI Yu, WANG Min-jun, MEI Jian-feng, CHEN Jian-shu, ZHANG Yan-lu, YING Guo-qing. Construction and Characterization of Electrochemical Biosensor based on Endotoxin Aptameer[J]. China Biotechnology, 2017, 37(8): 46-50.
[7] HE Min-yu, RAN Hai-tao. Aptamer Conjugated Nanomaterials for Targeted Cancer Therapeutics[J]. China Biotechnology, 2015, 35(4): 86-91.
[8] TANG De-ping, MAO Ai-hong, WANG Fang, ZHANG Hong, WANG Li, LIAO Shi-qi. Targeted Delivery of siRNA Mediated by Aptamer Modified Liposome[J]. China Biotechnology, 2015, 35(1): 54-60.
[9] WANG Jia-wen, FENG Jing-xian, LIN Jun-sheng, DIAO Yong. The Artificial Aptazyme Based Riboswitch[J]. China Biotechnology, 2014, 34(2): 59-64.
[10] ZHOU Ni, CHEN Dan, YAO Dong-sheng, XIE Chun-fang, LIU Da-ling. Development of An Electrochemical Aptasensor Basic on the ssDNA Aptamer of Ractopamine[J]. China Biotechnology, 2014, 34(1): 42-49.
[11] CHEN Dan, YAO Dong-sheng, XIE Chun-fang, LIU Da-ling. Development of an Aptasensor for Electrochemical Detection of Tetracycline[J]. China Biotechnology, 2013, 33(11): 56-62.