Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (10): 80-92    DOI: 10.13523/j.cb.2204049
    
Advances in Engineering Yeast Chassis for Producing Aromatic Compounds
Hui-min LI,Bin JIA,Xia LI,Duo LIU**()
Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education,School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
Download: HTML   PDF(1588KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Aromatic compounds including lots of species are in high demand and widely used in many areas. The synthesis of aromatic compounds by constructing microbial cell factories has unique advantages and industrial applications. Yeast chassis is often used to build cell factories due to its clear genetic background, well-performed gene manipulation tools, and mature industrial system. A series of advances has been made in the production of aromatic compounds by engineering yeast chassis, and several feasible solutions have been proposed to solve key problems. In view of the strategies and challenges of yeast synthesis of aromatic compounds, this paper systematically reviews and elaborates on the five aspects, namely, the aromatic compound synthetic pathway modification, utilization of diverse carbon sources and modification of transport systems, genome multi-target modification, special yeast chassis and microbial consortium construction, and applications of synthetic biology high-throughput technologies, and provides ideas for the construction and engineering of yeast chassis for producing aromatic compounds.



Key wordsAromatic compounds      Yeast      Chassis engineering      Genome rearrangement      Synthetic biology     
Received: 21 April 2022      Published: 04 November 2022
ZTFLH:  Q819  
Corresponding Authors: Duo LIU     E-mail: duo_liu0@tju.edu.cn
Cite this article:

Hui-min LI,Bin JIA,Xia LI,Duo LIU. Advances in Engineering Yeast Chassis for Producing Aromatic Compounds. China Biotechnology, 2022, 42(10): 80-92.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2204049     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I10/80

Fig.1 Advances in yeast chassis engineering strategy for producing aromatic compounds (a)Synthetic pathway modification. ARO3:Phospho-2-dehydro-3-deoxyheptonate aldolase;ARO4: Phospho-2-dehydro-3-deoxyheptonate aldolase;ARO1:Pentafunctional AROM polypeptide;ARO7:Chorismate mutase; E4P:Erythrose 4-phosphate;PEP: Phosphoenolpyruvate;DAHP: 3-Deoxy-D-arabino-heptulosonate-7-phosphate;SHIK: Shikimic;CHA: Chorismate;PPA: Prephenic acid;SA: Salicylic acid;MA: Muconic acid;2-PE: 2-Phenylethanol (b)Utilization of diverse carbon source substrates and modification of transport systems for the synthesis of aromatic compounds (c)Genome multi-target engineering:Application of CRISPR/Cas9;Genome rearrangement (d)Non-model yeast chassis and the consortium consisting of E.coli and yeast cells for producing aromatic compounds (e)Applications of high-throughput technologies:Machine learning;Biosensors;Automated methods and platforms
产品 代谢工程策略 发酵方式 产量 文献
酪醇 敲除PDC1、PHA2;表达ARO4K229L、ARO7G141S、ARO3K222L;过表达RKI1和TKL1 摇瓶 702.30 mg/L [7]
5 L发酵罐 9.90 g/L
酪醇 表达EcAROGD146N、EcpheAfbr、EcydiB、EcAROL;过表达TKL1、ARO10;敲除ARO9 摇瓶 541 mg/L [11]
红景天苷 敲除PDC1、PHA2;表达ARO4K229L、ARO7G141S、RrU8GT33opt、ARO3K222L;过表达RKI1和TKL1 摇瓶 1 575.45 mg/L [7]
5 L发酵罐 26.55 g/L
莽草酸 过表达ARO1D920A、ARO4K229L、TKL1 摇瓶 358 mg/L [8]
对香豆酸 过表达ARO4K229L、ARO7G141S、FjTAL、EcAROL;敲除ARO10、PDC5 发酵罐 1.93 g/L [10]
对香豆酸 表达AtPAL2、AtC4H、AtATR2、CYB5、FjTAL、EcAROL、MtPDH1;过表达ARO4K229L、ARO7G141S;敲除PDC5、ARO10 发酵罐 12.5 g/L [5]
对香豆酸 解脂耶氏酵母:敲除YlPYK、YlTYR1、YlTRP2、YlTRP3、YlARO8、YlARO9;过表达ScARO4K229L、AROGS180F、BbXFPK、AcXPK等 摇瓶 593 mg/L [52]
2-苯乙醇 表达EcAROGD146N、EcpheAfbr、EcydiB、EcAROL;过表达TKL1、ARO10;敲除ARO9 摇瓶 643 mg/L [11]
2-苯乙醇 过表达GLN3改造转运系统 摇瓶 3.59 g/L [31]
产品 代谢工程策略 发酵方式 产量 文献
2-苯乙醇 过表达GAP1、ARO8、ARO10、ADH2、GDH2 5 L发酵罐 6.3 g/L [32]
2-苯乙醇 解脂耶氏酵母:过表达YlPAR4、YlARO10、YlARO7、YlPHA2、ScARO7G141S、ScARO4K229L、AROGS180F、BbXFPK、AcXPK等;敲除YlTYR1、YlTRP2、YlTRP3、YlARO8、YlARO9、YlPYK 摇瓶 2 426 mg/L [52]
黏糠酸 敲除ARO3、ARO4、ZWF1;过表达ARO4K229L、EcL_01944opt、Pa5_5120opt、CaHQD2opt、TKL1;生物传感器、定向进化、ARO1截短表达 摇瓶 500 mg/L [14]
发酵罐 2.1 g/L
柚皮素 敲除ARO3、ARO10、PDC5、PDC6;表达ARO4G226S;过表达AtPAL1、CoC4H、CoCPR1、AtCHI1、AtCHS3、CoCHS3、At4CL3、CoTAL1 2 L发酵罐 112 mg/L [16]
柚皮素 解脂耶氏酵母:过表达RtTAL、Pc4CL、PhCHS、MsCHI、GhF3'H、CrCPR、SlF3H、YlARO1、YlACC1、YlACS2;培养条件优化 摇瓶 252 mg/L [51]
圣草酚 表达Pc4CL、PhCHS、MsCHI、AmF3H、AtFLS 摇瓶 134.2 mg/L
花旗松素 表达Pc4CL、PhCHS、MsCHI、AmF3H、AtFLS、PhFMO、CrCPR 摇瓶 110.5 mg/L
天竺葵素-3-
O-葡萄糖苷
表达HaCHS、MsCHI、At4CL2、AtPAL2、AmC4H、ScCPR1、PhANS、MdF3H、AaDFR、DcA3GT 深孔板 0.85 mg/L [18]
花青素-3-
O-葡萄糖苷
表达HaCHS、MsCHI、At4CL2、AtPAL2、AmC4H、ScCPR1、PhANS、MdF3H、PhF3'H、PtDFR、AtCPR1、FaA3GT2 深孔板 1.55 mg/L
飞燕草素-3-
O-葡萄糖苷
表达HaCHS、MsCHI、At4CL2、AtPAL2、AmC4H、ScCPR1、PhANS、SlF3'5'H、MdF3H、IhDFR、AtCPR1、FaA3GT2 深孔板 1.86 mg/L
咖啡酸 表达PaHpaB、SeHpaC、RtTAL 摇瓶 289 mg/L [19]
咖啡酸 敲除ARO10、PDC5;表达ARO7fbr、ARO4fbr、CoTAL、CoC3H、CoCPR1 摇瓶 11.432 mg/L [20]
咖啡酸 敲除ARO10、PDC5、gpp1;过表达ScARO7G141S、ARO4K229L、EcAROL、FjTAL、SbPAL1、AtCPR1、PtrC4H2、PtrC4H1、PtrC3H3、PaHpaB、SeHpaC、ScARO3、ScTAL1、ScTKL1、CkPTA、LmXFPK、ScPHA2、MtPDH1、BiFADS、BsRIBBA等 摇瓶 1.6 g/L [21]
发酵罐 5.5 g/L
阿魏酸 敲除ARO10、PDC5、gpp1;过表达ScARO7G141S、ARO4K229L、EcAROL、FjTAL、SbPAL1、AtCPR1、PtrC4H2、PtrC4H1、PtrC3H3、PaHpaB、SeHpaC、ScARO3、ScTAL1、ScTKL1、CkPTA、LmXFPK、NtCOMT1、ScMET6、LiMETK1、ScADO1、ScSAH1等 摇瓶 0.42 g/L
发酵罐 3.8 g/L
番茄枝碱 表达BvCYP76AD1、PsNCS、6OMT、CNMT、4'OMT、NMCH 摇瓶 80.6 μg/L [22]
对氨基苯甲酸 表达ABZ1、 ABZ2、ARO4K229L;敲除ARO7、TRP3 发酵罐 215 mg/L [27]
原儿茶酸 敲除ADH6、ADH7、BDH2、FDC、MHT1、SAM4;表达4CL、Ppech、vdh、pobA、PdvanA、PdvanB、ligM;过表达MET6、Rdmetf1 摇瓶 810 mg/L [28]
姜黄素 敲除fdc1;过表达PpFerA、ClDCS、ClCURS 摇瓶 2.7 mg/L [30]
多巴胺 CYP76AD1W13L, F309L 摇瓶 10.8 mg/L [67]
紫色杆菌素 SCRaMbLE-in 摇瓶 17.5 mg/L [48]
紫色杆菌素 解脂耶氏酵母:过表达ScARO4K229L、AROGS180F、BbXFPK、AcXPK等;敲除YlTYR1、YlTRP2、YlTRP3、YlARO8、YlARO9、YlPYK 摇瓶 366 mg/L [52]
脱氧紫色杆菌素 摇瓶 55 mg/L
白藜芦醇 过表达ARO4K229L、ScARO7G141S、ScAcc1S659A、 S1157A、HaTAL、At4CL1、VvVST1 摇瓶 415.65 mg/L
或531.41 mg/L
[9]
白藜芦醇 表达AtPAL2、AtC4H、At4CL2、VvVST1 摇瓶 151.65 mg/L [29]
白藜芦醇 解脂耶氏酵母;过表达FjTAL、At4CL1、VvVST1、YlARO4K221L、YlARO7G139S;敲除PDC5 发酵罐 12.4 g/L [54]
Table 1 Strategies used in engineering yeast chassis for producing aromatic compounds
[1]   Leonard E, Yan Y J, Fowler Z L, et al. Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids. Molecular Pharmaceutics, 2008, 5(2): 257-265.
doi: 10.1021/mp7001472 pmid: 18333619
[2]   Yokoyama R, Kleven B, Gupta A, et al. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase as the gatekeeper of plant aromatic natural product biosynthesis. Current Opinion in Plant Biology, 2022, 67: 102219.
doi: 10.1016/j.pbi.2022.102219
[3]   Ikeda M. Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering. Applied Microbiology and Biotechnology, 2006, 69(6): 615-626.
pmid: 16374633
[4]   Schnappauf G, Hartmann M, Künzler M, et al. The two 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase isoenzymes from Saccharomyces cerevisiae show different kinetic modes of inhibition. Archives of Microbiology, 1998, 169(6): 517-524.
pmid: 9575238
[5]   Liu Q L, Yu T, Li X W, et al. Rewiring carbon metabolism in yeast for high level production of aromatic chemicals. Nature Communications, 2019, 10: 4976.
doi: 10.1038/s41467-019-12961-5 pmid: 31672987
[6]   Luttik M A H, Vuralhan Z, Suir E, et al. Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: Quantification of metabolic impact. Metabolic Engineering, 2008, 10(3-4): 141-153.
doi: 10.1016/j.ymben.2008.02.002 pmid: 18372204
[7]   Liu H Y, Tian Y J, Zhou Y, et al. Multi-modular engineering of Saccharomyces cerevisiae for high-titre production of tyrosol and salidroside. Microbial Biotechnology, 2021, 14(6): 2605-2616.
doi: 10.1111/1751-7915.13667
[8]   Suástegui M, Guo W H, Feng X Y, et al. Investigating strain dependency in the production of aromatic compounds in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2016, 113(12): 2676-2685.
doi: 10.1002/bit.26037 pmid: 27317047
[9]   Li M J, Kildegaard K R, Chen Y, et al. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metabolic Engineering, 2015, 32: 1-11.
doi: 10.1016/j.ymben.2015.08.007
[10]   Rodriguez A, Kildegaard K R, Li M J, et al. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metabolic Engineering, 2015, 31: 181-188.
doi: 10.1016/j.ymben.2015.08.003 pmid: 26292030
[11]   Zhu L H, Wang J H, Xu S, et al. Improved aromatic alcohol production by strengthening the shikimate pathway in Saccharomyces cerevisiae. Process Biochemistry, 2021, 103: 18-30.
doi: 10.1016/j.procbio.2021.01.025
[12]   刘少奇. 酿酒酵母中水杨酸生物合成研究. 北京: 北京化工大学, 2017.
[12]   Liu S Q. The biosynthesis of salicylic acid in Saccharomyces cerevisiae. Beijing: Beijing University of Chemical Technology, 2017.
[13]   Curran K A, Leavitt J M, Karim A S, et al. Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metabolic Engineering, 2013, 15: 55-66.
doi: 10.1016/j.ymben.2012.10.003
[14]   Leavitt J M, Wagner J M, Tu C C, et al. Biosensor-enabled directed evolution to improve muconic acid production in Saccharomyces cerevisiae. Biotechnology Journal, 2017, 12(10): 1600687.
[15]   Wang Y Q, Zhang H, Lu X Y, et al. Advances in 2-phenylethanol production from engineered microorganisms. Biotechnology Advances, 2019, 37(3): 403-409.
doi: S0734-9750(19)30024-2 pmid: 30768954
[16]   Koopman F, Beekwilder J, Crimi B, et al. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microbial Cell Factories, 2012, 11: 155.
doi: 10.1186/1475-2859-11-155 pmid: 23216753
[17]   Rodriguez A, Strucko T, Stahlhut S G, et al. Metabolic engineering of yeast for fermentative production of flavonoids. Bioresource Technology, 2017, 245: 1645-1654.
doi: S0960-8524(17)30930-6 pmid: 28634125
[18]   Eichenberger M, Hansson A, Fischer D, et al. De novo biosynthesis of anthocyanins in Saccharomyces cerevisiae. FEMS Yeast Research, 2018, 18(4): foy046.
[19]   Liu L Q, Liu H, Zhang W, et al. Engineering the biosynthesis of caffeic acid in Saccharomyces cerevisiae with heterologous enzyme combinations. Engineering, 2019, 5(2): 287-295.
doi: 10.1016/j.eng.2018.11.029
[20]   Li Y Z, Mao J W, Liu Q L, et al. De novo biosynthesis of caffeic acid from glucose by engineered Saccharomyces cerevisiae. ACS Synthetic Biology, 2020, 9(4): 756-765.
doi: 10.1021/acssynbio.9b00431
[21]   Chen R B, Gao J Q, Yu W, et al. Engineering cofactor supply and recycling to drive phenolic acid biosynthesis in yeast. Nature Chemical Biology, 2022, 18(5): 520-529.
doi: 10.1038/s41589-022-01014-6 pmid: 35484257
[22]   DeLoache W C, Russ Z N, Narcross L, et al. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nature Chemical Biology, 2015, 11(7): 465-471.
doi: 10.1038/nchembio.1816 pmid: 25984720
[23]   Galanie S, Thodey K, Trenchard I J, et al. Complete biosynthesis of opioids in yeast. Science, 2015, 349(6252): 1095-1100.
doi: 10.1126/science.aac9373 pmid: 26272907
[24]   Srinivasan P, Smolke C D. Biosynthesis of medicinal tropane alkaloids in yeast. Nature, 2020, 585(7826): 614-619.
doi: 10.1038/s41586-020-2650-9
[25]   Kulagina N, Guirimand G, Melin C, et al. Enhanced bioproduction of anticancer precursor vindoline by yeast cell factories. Microbial Biotechnology, 2021, 14(6): 2693-2699.
doi: 10.1111/1751-7915.13898 pmid: 34302444
[26]   Borja G M, Rodriguez A, Campbell K, et al. Metabolic engineering and transcriptomic analysis of Saccharomyces cerevisiae producing p-coumaric acid from xylose. Microbial Cell Factories, 2019, 18(1): 191.
doi: 10.1186/s12934-019-1244-4
[27]   Averesch N J H, Winter G, Krömer J O. Production of Para-aminobenzoic acid from different carbon-sources in engineered Saccharomyces cerevisiae. Microbial Cell Factories, 2016, 15: 89.
doi: 10.1186/s12934-016-0485-8 pmid: 27230236
[28]   Zhang R K, Tan Y S, Cui Y Z, et al. Lignin valorization for protocatechuic acid production in engineered Saccharomyces cerevisiae. Green Chemistry, 2021, 23(17): 6515-6526.
doi: 10.1039/D1GC01442K
[29]   Costa C E, Møller-Hansen I, Romaní A, et al. Resveratrol production from hydrothermally pretreated Eucalyptus wood using recombinant industrial Saccharomyces cerevisiae strains. ACS Synthetic Biology, 2021, 10(8): 1895-1903.
doi: 10.1021/acssynbio.1c00120
[30]   Rainha J, Rodrigues J L, Faria C, et al. Curcumin biosynthesis from ferulic acid by engineered Saccharomyces cerevisiae. Biotechnology Journal, 2022, 17(3): 2100400.
[31]   Chen X R, Wang Z Y, Guo X N, et al. Regulation of general amino acid permeases Gap1p, GATA transcription factors Gln3p and Gat1p on 2-phenylethanol biosynthesis via ehrlich pathway. Journal of Biotechnology, 2017, 242: 83-91.
doi: S0168-1656(16)31628-5 pmid: 27908775
[32]   Wang Z Y, Jiang M Y, Guo X N, et al. Reconstruction of metabolic module with improved promoter strength increases the productivity of 2-phenylethanol in Saccharomyces cerevisiae. Microbial Cell Factories, 2018, 17(1): 60.
doi: 10.1186/s12934-018-0907-x
[33]   He H B, Bian G K, Herbst-Gervasoni C J, et al. Discovery of the cryptic function of terpene cyclases as aromatic prenyltransferases. Nature Communications, 2020, 11: 3958.
doi: 10.1038/s41467-020-17642-2 pmid: 32769971
[34]   Jakociūnas T, Bonde I, Herrgård M, et al. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metabolic Engineering, 2015, 28: 213-222.
doi: 10.1016/j.ymben.2015.01.008
[35]   Bao Z H, HamediRad M, Xue P, et al. Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision. Nature Biotechnology, 2018, 36(6): 505-508.
doi: 10.1038/nbt.4132
[36]   Kildegaard K R, Tramontin L R R, Chekina K, et al. CRISPR/Cas9-RNA interference system for combinatorial metabolic engineering of Saccharomyces cerevisiae. Yeast, 2019, 36(5): 237-247.
doi: 10.1002/yea.3390
[37]   Naseri G, Behrend J, Rieper L, et al. COMPASS for rapid combinatorial optimization of biochemical pathways based on artificial transcription factors. Nature Communications, 2019, 10: 2615.
doi: 10.1038/s41467-019-10224-x pmid: 31197154
[38]   Annaluru N, Muller H, Mitchell L A, et al. Total synthesis of a functional designer eukaryotic chromosome. Science, 2014, 344(6179): 55-58.
doi: 10.1126/science.1249252 pmid: 24674868
[39]   Wang Y Q, Shen Y, Gu Y, et al. Genome writing: current progress and related applications. Genomics, Proteomics & Bioinformatics, 2018, 16(1): 10-16.
[40]   Dymond J S, Richardson S M, Coombes C E, et al. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature, 2011, 477(7365): 471-476.
doi: 10.1038/nature10403
[41]   Shen Y, Wang Y, Chen T, et al. Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome. Science, 2017, 355(6329): eaaf4791.
[42]   Wu Y, Li B Z, Zhao M, et al. Bug mapping and fitness testing of chemically synthesized chromosome X. Science, 2017, 355(6329): eaaf4706.
[43]   Xie Z X, Li B Z, Mitchell L A, et al. “Perfect” designer chromosome V and behavior of a ring derivative. Science, 2017, 355(6329): eaaf4704.
[44]   Zhang W M, Zhao G H, Luo Z Q, et al. Engineering the ribosomal DNA in a megabase synthetic chromosome. Science, 2017, 355(6329): eaaf3981.
[45]   Dymond J, Boeke J. The Saccharomyces cerevisiae SCRaMbLE system and genome minimization. Bioengineered Bugs, 2012, 3(3): 168-171.
[46]   Wang J, Xie Z X, Ma Y, et al. Ring synthetic chromosome V SCRaMbLE. Nature Communications, 2018, 9(1): 3783.
doi: 10.1038/s41467-018-06216-y pmid: 30224715
[47]   Wang J, Jia B, Xie Z X, et al. Improving prodeoxyviolacein production via multiplex SCRaMbLE iterative cycles. Frontiers of Chemical Science and Engineering, 2018, 12(4): 806-814.
doi: 10.1007/s11705-018-1739-2
[48]   Liu W, Luo Z Q, Wang Y, et al. Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE-in methods. Nature Communications, 2018, 9: 1936.
doi: 10.1038/s41467-018-04254-0
[49]   Lacerda M P, Oh E J, Eckert C. The model system Saccharomyces cerevisiae versus emerging non-model yeasts for the production of biofuels. Life (Basel, Switzerland), 2020, 10(11): 299.
[50]   Raschmanová H, Weninger A, Glieder A, et al. Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: current state and future prospects. Biotechnology Advances, 2018, 36(3): 641-665.
doi: S0734-9750(18)30006-5 pmid: 29331410
[51]   Lv Y K, Marsafari M, Koffas M, et al. Optimizing oleaginous yeast cell factories for flavonoids and hydroxylated flavonoids biosynthesis. ACS Synthetic Biology, 2019, 8(11): 2514-2523.
doi: 10.1021/acssynbio.9b00193 pmid: 31622552
[52]   Gu Y, Ma J B, Zhu Y L, et al. Engineering Yarrowia lipolytica as a chassis for de novo synthesis of five aromatic-derived natural products and chemicals. ACS Synthetic Biology, 2020, 9(8): 2096-2106.
doi: 10.1021/acssynbio.0c00185
[53]   Palmer C M, Miller K K, Nguyen A, et al. Engineering 4-coumaroyl-CoA derived polyketide production in Yarrowia lipolytica through a β-oxidation mediated strategy. Metabolic Engineering, 2020, 57: 174-181.
doi: 10.1016/j.ymben.2019.11.006
[54]   Sáez-Sáez J, Wang G K, Marella E R, et al. Engineering the oleaginous yeast Yarrowia lipolytica for high-level resveratrol production. Metabolic Engineering, 2020, 62: 51-61.
doi: S1096-7176(20)30129-4 pmid: 32818629
[55]   Wang L Y, Deng A H, Zhang Y, et al. Efficient CRISPR-Cas9 mediated multiplex genome editing in yeasts. Biotechnology for Biofuels, 2018, 11: 277.
doi: 10.1186/s13068-018-1271-0 pmid: 30337956
[56]   Li M W, Lang X Y, Moran Cabrera M, et al. CRISPR-mediated multigene integration enables Shikimate pathway refactoring for enhanced 2-phenylethanol biosynthesis in Kluyveromyces marxianus. Biotechnology for Biofuels, 2021, 14(1): 3.
doi: 10.1186/s13068-020-01852-3
[57]   Fasan R D. Tuning P450 enzymes as oxidation catalysts. ACS Catalysis, 2012, 2(4): 647-666.
doi: 10.1021/cs300001x
[58]   Leonard E, Yan Y J, Koffas M A G. Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated flavonols in Escherichia coli. Metabolic Engineering, 2006, 8(2): 172-181.
doi: 10.1016/j.ymben.2005.11.001
[59]   Goers L, Freemont P, Polizzi K M. Co-culture systems and technologies: taking synthetic biology to the next level. Journal of the Royal Society, Interface, 2014, 11(96): 20140065.
[60]   Zhang W, Liu H, Li X, et al. Production of naringenin from D-xylose with co-culture of E. coli and S. cerevisiae. Engineering in Life Sciences, 2017, 17(9): 1021-1029.
doi: 10.1002/elsc.201700039 pmid: 32624852
[61]   Katsuyama Y, Miyahisa I, Funa N, et al. One-pot synthesis of genistein from tyrosine by coincubation of genetically engineered Escherichia coli and Saccharomyces cerevisiae cells. Applied Microbiology and Biotechnology, 2007, 73(5): 1143-1149.
doi: 10.1007/s00253-006-0568-2 pmid: 16960736
[62]   Lu Y, Song Y Y, Zhu J, et al. Potential application of CHS and 4CL genes from grape endophytic fungus in production of naringenin and resveratrol and the improvement of polyphenol profiles and flavour of wine. Food Chemistry, 2021, 347: 128972.
[63]   Camacho D M, Collins K M, Powers R K, et al. Next-generation machine learning for biological networks. Cell, 2018, 173(7): 1581-1592.
doi: S0092-8674(18)30592-0 pmid: 29887378
[64]   Zhou Y K, Li G, Dong J K, et al. MiYA, an efficient machine-learning workflow in conjunction with the YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways in Saccharomyces cerevisiae. Metabolic Engineering, 2018, 47: 294-302.
doi: 10.1016/j.ymben.2018.03.020
[65]   Vaishnav E D, de Boer C G, Molinet J, et al. The evolution, evolvability and engineering of gene regulatory DNA. Nature, 2022, 603(7901): 455-463.
doi: 10.1038/s41586-022-04506-6
[66]   Huang P S, Boyken S E, Baker D. The coming of age of de novo protein design. Nature, 2016, 537(7620): 320-327.
doi: 10.1038/nature19946
[67]   Lee M E, Aswani A, Han A S, et al. Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay. Nucleic Acids Research, 2013, 41(22): 10668-10678.
doi: 10.1093/nar/gkt809 pmid: 24038353
[68]   Liu D, Liu H, Li B Z, et al. Multigene pathway engineering with regulatory linkers (M-PERL). ACS Synthetic Biology, 2016, 5(12): 1535-1545.
pmid: 27389125
[69]   Skjoedt M L, Snoek T, Kildegaard K R, et al. Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast. Nature Chemical Biology, 2016, 12(11): 951-958.
doi: 10.1038/nchembio.2177 pmid: 27642864
[70]   Wang R F, Cress B F, Yang Z, et al. Design and characterization of biosensors for the screening of modular assembled naringenin biosynthetic library in Saccharomyces cerevisiae. ACS Synthetic Biology, 2019, 8(9): 2121-2130.
doi: 10.1021/acssynbio.9b00212
[71]   Lv Y K, Gu Y, Xu J L, et al. Coupling metabolic addiction with negative autoregulation to improve strain stability and pathway yield. Metabolic Engineering, 2020, 61: 79-88.
doi: S1096-7176(20)30093-8 pmid: 32445959
[72]   Gowers G O F, Chee S M, Bell D, et al. Improved betulinic acid biosynthesis using synthetic yeast chromosome recombination and semi-automated rapid LC-MS screening. Nature Communications, 2020, 11: 868.
doi: 10.1038/s41467-020-14708-z pmid: 32054834
[73]   褚亚东, 赵宗保. 小型集成化自动移液工作站系统及应用. 合成生物学, 2022, 3(1): 195-208.
[73]   Chu Y D, Zhao Z B. Designing and application of small-scale integrated automated liquid handling system. Synthetic Biology Journal, 2022, 3(1): 195-208.
[74]   Chambers S, Kitney R, Freemont P. The Foundry: the DNA synthesis and construction Foundry at Imperial College. Biochemical Society Transactions, 2016, 44(3): 687-688.
doi: 10.1042/BST20160007 pmid: 27284027
[75]   HamediRad M, Chao R, Weisberg S, et al. Towards a fully automated algorithm driven platform for biosystems design. Nature Communications, 2019, 10: 5150.
doi: 10.1038/s41467-019-13189-z pmid: 31723141
[76]   张亭, 冷梦甜, 金帆, 等. 合成生物研究重大科技基础设施概述. 合成生物学, 2022, 3(1): 184-194.
[76]   Zhang T, Leng M T, Jin F, et al. Overview on platform for synthetic biology research at Shenzhen. Synthetic Biology Journal, 2022, 3(1): 184-194.
[1] BIAN Yi-fan,LIU Shu-han,ZHANG Bei-meng,ZHANG Yu-long,LI Xin-tong,WANG Peng-chao. Advances in Microbial Synthesis of 2-Phenylethanol[J]. China Biotechnology, 2022, 42(8): 128-136.
[2] Chun-lei CAO,Pei-bin YU,Dian-hui WU,Guo-lin CAI. Screening of Several Strains of Brewer’s Yeast Strains and Comparison of Their Fermentability[J]. China Biotechnology, 2022, 42(7): 45-53.
[3] Xue-xia ZENG,Yu DAN,Shao-ming MAO,Jia-hui SUN,Guo-dong LUAN,Xue-feng LV. Research Progress on the Cyanobacterial Photosynthetic Production of Sugars Utilizing Carbon Dioxide[J]. China Biotechnology, 2022, 42(7): 90-100.
[4] ZHANG Da-lu,GE Qi,FENG Yi-bo,CHEN Wei-gang. Comparison and Analysis on Scientific Research Programs on DNA Data Storage[J]. China Biotechnology, 2022, 42(6): 116-129.
[5] BAI Song,HOU Zheng-jie,GAO Geng-rong,QIAO Bin,CHENG Jing-sheng. Advances in the Synthesis of Odd-chain Fatty Acids by Microorganisms[J]. China Biotechnology, 2022, 42(6): 76-85.
[6] LIANG Shi-yu,WAN Li,GUO Xiao-jia,WANG Xue-ying,LV Li-ting,HU Ying-han,ZHAO Zong-bao. Engineered Rhodosporidium toruloides Strains Capable of Biosynthesizing a Non-natural Cofactor[J]. China Biotechnology, 2022, 42(5): 58-68.
[7] LIU Ming-zhu,ZHANG Liang,GUO Fang,LI Chun,FENG Xu-dong. Construction of Yeast Surface Display System and Application in Cellulose Degrading[J]. China Biotechnology, 2022, 42(5): 91-99.
[8] Chun-li HAN,Han-jie WANG. Advances of Engineered Live Biotherapeutics in Tumor Immunotherapy[J]. China Biotechnology, 2022, 42(10): 39-50.
[9] ZHANG Yao,QIU Xiao-man,SUN Hao,GUO Lei,HONG Hou-sheng. The Industrial Applications of Saccharomyces cerevisiae[J]. China Biotechnology, 2022, 42(1/2): 26-36.
[10] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[11] HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase[J]. China Biotechnology, 2021, 41(9): 110-125.
[12] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.
[13] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[14] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[15] CHEN Ying,LI Qian. Patent Analysis on the Development Trend of Industrial Application of Special Yeast[J]. China Biotechnology, 2021, 41(4): 91-99.