Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (3): 1-12    DOI: 10.13523/j.cb.2108070
    
Screening of Interacting Proteins of MAT in Aspergillus critatus by GST Pull-down
WU Juan,XU Ning,ZHANG Sheng-hua,ZHANG Xiao-dan,LIU Yuan-yuan,GE Yong-yi**()
School of Life Sciences, Guizhou University, Guiyang 550025, China
Download: HTML   PDF(6413KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: Aspergillus cristatus is a homothallic fungus, whose sporulation is regulated by osmotic pressure, which is quite different from the light-regulated sporulation mechanism of Aspergillus nidulans. The sexual reproduction of A. cristatus is mainly regulated by MAT1-1-1 and MAT1-2-1, but the regulation mechanism of the MAT gene on the sexual reproduction is still unclear. This study aims to screen the interaction proteins of A. cristatum MAT, and lay the foundation for the further study of the sexual sporulation mechanism of A. cristatum.Methods: This study screened the interaction protein with MAT1-1-1 and MAT1-2-1 by GST pull-down combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). We analyzed the biological information of the interaction protein using ProteinPilot, Gene Ontology and the genome databank of A. cristatus. The study also detected the expression level of SI65_00917 and SI65_03348 in sexual development by RT-qPCR, and used yeast two-hybrid technology to verify their interaction with MAT protein.Results: The GST-MAT1-1-1 and GST-MAT1-2-1 vectors were successfully constructed, and the target bait proteins were induced to express and purify. The bait proteins were used to capture the interacting proteins from the total protein of A. cristatus. The results showed that 56 proteins interacted with MAT1-1-1, and 413 proteins interacted with MAT1-2-1, respectively. GO analysis shows that these interaction proteins are involved in translation regulation, metabolic processes, protein transport, protein binding and other biological processes, and share nucleotide binding activity, catalytic activity, and protein binding activity. The results from RT-qPCR indicated that the interaction proteins SI65_00917 would participate in the sexual development in A.cristatus. Yeast two-hybrid results show that SI65_00917 protein has auto-activation and may be a transcription factor, and SI65_03348 protein interacts with MAT1-1-1 and MAT1-2-1 in yeast.Conclusion: These results indicate that MAT regulates the sexual development of A.cristatus through direct or indirect interaction with the other proteins.



Key wordsAspergillus critatus      MAT      GST pull-down      Interaction protein     
Received: 30 August 2021      Published: 07 April 2022
ZTFLH:  Q819  
Corresponding Authors: Yong-yi GE     E-mail: 746560455@qq.com
Cite this article:

WU Juan, XU Ning, ZHANG Sheng-hua, ZHANG Xiao-dan, LIU Yuan-yuan, GE Yong-yi. Screening of Interacting Proteins of MAT in Aspergillus critatus by GST Pull-down. China Biotechnology, 2022, 42(3): 1-12.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2108070     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I3/1

Fig.1 Construction of fusion expression carrier (a) pET-GST-MAT1-1-1 plasmid digested by Xba I, M: DNA marker; 1: recombinant plasmid digestion; 2: plasmid DNA (b) pET-GST-MAT1-2-1 plasmid digested by Nco I, M: DNA marker; 1: recombinant plasmid digestion; 2: plasmid DNA
Fig.2 Expression and purification of the fusion protein (a) SDS-PAGE electrophoresis of broken supernatant and pellet of pET-GST-MAT1-1-1, 1:the supernatant protein; 2:insoluble protein(the red arrow is a recombinant protein) (b) SDS-PAGE electrophoresis of purified fusion protein, 1:target protein(the red arrow is a recombinant protein) (c) SDS-PAGE electrophoresis of pET-GST-MAT1-2-1,1:GST-MAT1-2-1 supernatant recombinant protein purification
Fig.3 GST-MAT1-1-1 pull-down result detection (a)Western blot detection before GST-MAT1-1-1 pull-down (b) Western blot detection after GST-MAT1-1-1 pull-down (c) Silver stain detection after GST-MAT1-1-1 pull-down
Fig.4 GST-MAT1-2-1 pull-down result detection (a)Western blot detection before GST-MAT1-2-1 pull-down (b)Western blot detection after GST-MAT1-2-1 pull-down (c) Silver stain detection after GST-MAT1-2-1 pull-down
Fig.5 Proteins identified by CTRL, EX protein samples in the MAT1-1-1(a) and MAT1-2-1(b)
Protein ID Gene name Coverage /% Mass /Da Unique peptide Identified by
A0A1B0THQ4_9EURO MAT1-1-1 60.420 000 553 131 1 42 804.1 2 GST
A0A1B0THQ4_9EURO MAT1-1-1 60.420 000 553 131 1 42 804.1 48 GST-MAT1-1-1
A0A1E3BR33_9EURO SI65_01009 20.649 999 380 111 7 49 950.2 8
A0A1E3BQW9_9EURO SI65_00917 10.029 999 911 785 1 31 192.2 2
A0A1E3BH40_9EURO SI65_03348 19.609 999 656 677 2 21 912 3
Table 1 The information table of interaction protein with MAT1-1-1
Protein ID Gene name Coverage /% Mass /Da Unique peptide Identified by
A0A1E3BR33_9EURO SI65_01009 7.174 000 144 004 82 49 950.2 4 GST
A0A1B0THQ3_9EURO MAT1-2-1 17.090 000 2121 92 5 39 254.7 4
A0A1B0THQ3_9EURO MAT1-2-1 73.669 999 837 875 4 39 254.7 80 GST-MAT1-2-1
A0A1E3BKS5_9EURO SI65_02352 37.250 000 238 418 6 59 636.7 20
A0A1E3BQW9_9EURO SI65_00917 3.805 999 830 365 18 31 192.2 2
A0A1E3BH40_9EURO SI65_03348 32.350 000 739 097 6 21 912 4
Table 2 The information table of interaction protein with MAT1-2-1
Fig.6 MAT1-1-1 (a), MAT1-2-1 (b)reciprocal protein GO function analysis (cell composition, biological process, molecular function)
Fig.7 RNA extraction and retrorecorded PCR electrophoresis (a) Morphological characteristics of Aspergillus cristatus in three different sexual development stages (b) RNA from the different sexual development of Aspergillus critatus,M: DNA maker; 1: RNA during the nutritional growth stage(S1); 2: RNA during the formation of closed shell(S2); 3:RNA during ascospore formation period(S3) (c) The detection result of GAPDH, M: DNA marker; 1~6: S1 stage; 7~12:S2 stage; 13~18:S3 stage
时期 基因 Cq值 F
营养菌丝 GAPDH 14.91 1.00
SI65_03348 16.63 1.00
SI65_00917 24.28 1.00
闭囊壳形成 GAPDH 17.59 -
SI65_03348 20.31 0.50
SI65_00917 22.42 23.37
子囊孢子大量形成 GAPDH 18.41 -
SI65_03348 21.14 0.49
SI65_00917 20.33 174.85
Table 3 Cq and F values of the SI65_03348, SI65_00917 and GAPDH genes at the different stages
Fig.8 Relative expression index of the SI65_00917, SI65_03348 and GAPDH genes at different periods (a) The multiples of expression difference between SI65_00917 and GAPDH at different stages of sexual development (b) The multiples of expression difference between SI65_04438 and GAPDH at different stages of sexual development
Fig.9 Yeast two-hybrid vector construction (a) CDS sequence amplification, laneM: DNA maker, 1: cds sequence amplification of MAT1-1-1(1.1 kb); 2:cds sequence amplification of MAT1-2-1(1.0 kb); 3:cds sequence amplification of SI65_00917(0.8kb); 4: cds sequence amplification of SI65_03348(0.6 kb) (b) Recombinant vector double restriction digestion verification, M: DNA maker; 1: AD-MAT1-1-1 plasmid digested by EcoR I and Nde I; 2: AD-MAT1-2-1 plasmid digested by EcoR I and Nde I; 3: BD-00917 plasmid digested by EcoR I and BamH I; 4: BD-03348 plasmid digested by EcoR I and BamH I
Fig.10 Identification of auto-activation and interaction verification (a) Identification of auto-activation for bait BD-00917, BD-03348 (b) Interaction verification of SI65_03348 and MAT1-1-1, MAT1-2-1
[1]   Ene I V, Bennett R J. The cryptic sexual strategies of human fungal pathogens. Nature Reviews Microbiology, 2014, 12(4):239-251.
doi: 10.1038/nrmicro3236
[2]   Whittle C A, Nygren K, Johannesson H. Consequences of reproductive mode on genome evolution in fungi. Fungal Genetics and Biology, 2011, 48(7):661-667.
doi: 10.1016/j.fgb.2011.02.005 pmid: 21362492
[3]   Szewczyk E, Krappmann S. Conserved regulators of mating are essential for Aspergillus fumigatus cleistothecium formation. Eukaryotic Cell, 2010, 9(5):774-783.
doi: 10.1128/EC.00375-09 pmid: 20348388
[4]   Ni M, Feretzaki M, Sun S, et al. Sex in fungi. Annual Review of Genetics, 2011, 45(1):405-430.
doi: 10.1146/genet.2011.45.issue-1
[5]   Liu K H, Shen W C. Mating differentiation in Cryptococcus neoformans is negatively regulated by the Crk1 protein kinase. Fungal Genetics and Biology, 2011, 48(3):225-240.
doi: 10.1016/j.fgb.2010.11.005
[6]   Heitman J, Sun S, James T Y. Evolution of fungal sexual reproduction. Mycologia, 2013, 105(1):1-27.
doi: 10.3852/12-253 pmid: 23099518
[7]   施笑笑, 王教瑜, 王艳丽, 等. 子囊菌交配型位点与交配型基因研究进展. 微生物学通报, 2020, 47(5):1572-1581.
[7]   Shi X X, Wang J Y, Wang Y L, et al. Mating type genes in ascomycetes: a review. Microbiology China, 2020, 47(5):1572-1581.
[8]   Turgeon B G, Yoder O C. Proposed nomenclature for mating type genes of filamentous ascomycetes. Fungal Genetics and Biology, 2000, 31(1):1-5.
pmid: 11118130
[9]   Ge Y Y, Yu F M, Yang Z J, et al. Genetic basis and function of mating-type genes in Aspergillus cristatus. Mycosphere, 2019, 10(1):622-633.
doi: 10.5943/mycosphere
[10]   Grognet P, Bidard F, Kuchly C, et al. Maintaining two mating types: structure of the mating type locus and its role in heterokaryosis in Podospora anserina. Genetics, 2014, 197(1):421-432.
doi: 10.1534/genetics.113.159988 pmid: 24558260
[11]   Kanamori M, Kato H, Yasuda N, et al. Novel mating type-dependent transcripts at the mating type locus in Magnaporthe oryzae. Gene, 2007, 403(1-2):6-17.
pmid: 17881155
[12]   Yong M L, Yu J J, Pan X Y, et al. Two mating-type genes MAT1-1-1 and MAT1-1-2 with significant functions in conidiation, stress response, sexual development, and pathogenicity of rice false smut fungus Villosiclava virens. Current Genetics, 2020, 66(5):989-1002.
doi: 10.1007/s00294-020-01085-9
[13]   Becker K, Beer C, Freitag M, et al. Genome-wide identification of target genes of a mating-type α-domain transcription factor reveals functions beyond sexual development. Molecular Microbiology, 2015, 96(5):1002-1022.
doi: 10.1111/mmi.2015.96.issue-5
[14]   Dyer P S, Paoletti M. Reproduction in Aspergillus fumigatus: sexuality in a supposedly asexual species. Medical Mycology, 2005, 43(S1):S7-S14.
[15]   Böhm J, Hoff B, O’Gorman C M, et al. Sexual reproduction and mating-type-mediated strain development in the penicillin-producing fungus Penicillium chrysogenum. PNAS, 2013, 110(4):1476-1481.
doi: 10.1073/pnas.1217943110
[16]   Arnaise S, Debuchy R, Picard M. What is a bona fide mating-type gene? Internuclear complementation of mat mutants in Podospora anserina. Molecular and General Genetics: MGG, 1997, 256(2):169-178.
[17]   Kim H, Wright S J, Park G, et al. Roles for receptors, pheromones, G proteins, and mating type genes during sexual reproduction in Neurospora crassa. Genetics, 2012, 190(4):1389-1404.
doi: 10.1534/genetics.111.136358
[18]   Whiteway M S, Wu C, Leeuw T, et al. Association of the yeast pheromone response G protein beta gamma subunits with the MAP kinase scaffold Ste5p. Science, 1995, 269(5230):1572-1575.
pmid: 7667635
[19]   Chol K Y, Satterberg B, Lyons D M, et al. Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae. Cell, 1994, 78(3):499-512.
doi: 10.1016/0092-8674(94)90427-8
[20]   任春光, 谭玉梅, 任秀秀, 等. 冠突曲霉veA基因缺失型与野生型的差异代谢物研究. 菌物学报, 2018, 37(2):193-204.
[20]   Ren C G, Tan Y M, Ren X X, et al. Differential metabolite analysis of the veA gene deletion and wild type strains of Aspergillus cristatus. Mycosystema, 2018, 37(2):193-204.
[21]   余春芳, 熊庆, 李文仿, 等. 冠突散囊菌nsdD基因超表达菌株的构建及表型分析. 基因组学与应用生物学, 2017, 36(3):900-905.
[21]   Yu C F, Xiong Q, Li W F, et al. Construction and phenotypic analysis of over-expression strain of nsdD gene in Eurotium cristatum. Genomics and Applied Biology, 2017, 36(3):900-905.
[22]   Lehti-Shiu M D, Panchy N, Wang P P, et al. Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2017, 1860(1):3-20.
doi: 10.1016/j.bbagrm.2016.08.005
[23]   Nolting N, Pöggeler S. A MADS box protein interacts with a mating-type protein and is required for fruiting body development in the homothallic ascomycete Sordaria macrospora. Eukaryotic Cell, 2006, 5(7):1043-1056.
pmid: 16835449
[24]   Jacobsen S, Wittig M, Pöggeler S. Interaction between mating-type proteins from the homothallic fungus Sordaria macrospora. Current Genetics, 2002, 41(3):150-158.
pmid: 12111096
[25]   郑欣欣. 茯砖茶中“金花”菌产孢机制及其功能性研究. 西安: 陕西科技大学, 2015.
[25]   Zheng X X. Study on sporulation mechanism and function of ‘Jinhua’ fungi in fuzhuan brick tea. Xi’an: Shanxi University of Science & Technology, 2015.
[26]   Rao X Y, Huang X L, Zhou Z C, et al. An improvement of the 2-ΔΔCt method for quantitative real-time polymerase chain reaction data analysis . Biostatistics,Bioinformatics and Biomathematics, 2013, 3(3):71-85.
[27]   Wissmueller S, Font J, Liew C W, et al. Protein-protein interactions: analysis of a false positive GST pulldown result. Proteins, 2011, 79(8):2365-2371.
doi: 10.1002/prot.23068
[1] JIA Gui-yan,WANG Yong-jie,CHEN Zhi-kang,CHEN Xing,YIN Kui-de,LI Wen,WANG Yan-hong. Cloning and Analysis of Novel Functional Genes in Halomonas alkaliphila DSM 16354 T[J]. China Biotechnology, 2022, 42(3): 27-37.
[2] XU Hui, DING Jian, SHI Zhong-ping. Research on a Fed-batch of Nitrogen Source Fermentation Process to Improve the Spores of Bacillus Licheniformis BF-002[J]. China Biotechnology, 2022, 42(3): 47-54.
[3] WU Dong,XIAO Feng,YUAN Min,CHEN Yu-bao,ZHANG Hong-xiang. Transformation of Scientific and Technological Achievements in Biomedical Field in China from 2011 to 2020[J]. China Biotechnology, 2022, 42(1/2): 191-201.
[4] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[5] ZHANG Heng,LIU Hui-yan,PAN Lin,WANG Hong-yan,LI Xiao-fang,WANG Tong,FANG Hai-tian. Research Strategy for Biosynthesis of Gamma Aminobutyric Acid[J]. China Biotechnology, 2021, 41(8): 110-119.
[6] LI Kai-xiu,SI Wei. Progress in the Treatment of Inflammatory Bowel Diseases by Exosomes Derived from Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(7): 66-73.
[7] WANG Yu-xuan,CHEN Ting,ZHANG Yong-liang. Research Progress on the Biological Function of MiR-148[J]. China Biotechnology, 2021, 41(7): 74-80.
[8] BAI Jia-cheng,CHI Ming-zhe,HU Ya-wen,HAO Meng,ZHANG Xue-lian. Construction and Biological Characteristics of ClpC and ClpX Knock-down Strains in Mycobacterium smegmatis[J]. China Biotechnology, 2021, 41(6): 13-22.
[9] ZHANG Ling,CAO Xiao-dan,YANG Hai-xu,LI Wen-lei. The Application of Continuous Purification in Affinity Chromatography and Evaluation of Production Scale-up[J]. China Biotechnology, 2021, 41(6): 38-44.
[10] ZHANG Sai,WANG Gang,LIU Zhong-ming,LI Hui-jun,WANG Da-ming,QIAN Chun-gen. Development and Performance Evaluation of a Rapid Antigen Test for SARS-CoV-2[J]. China Biotechnology, 2021, 41(5): 27-34.
[11] DUAN Yang-yang,ZHANG Feng-ting,CHENG Jiang,SHI Jin,YANG Juan,LI Hai-ning. The Effect of SIRT2 on Apoptosis and Mitochondrial Function in Parkinson’s Disease Model Cells Induced by MPP+[J]. China Biotechnology, 2021, 41(4): 1-8.
[12] WANG Yi-han,LI Hai-yan,XUE Yong-chang. The Structural Characteristics and Engineering Reconstruction of Flavin-dependent Halogenase[J]. China Biotechnology, 2021, 41(4): 74-80.
[13] HU Sheng-tao,ZHANG Er-bing,LIN Ye,ZHANG Feng,HUANG Dan,SONG Hou-pan,LIU Bin,CAI Xiong. Research Advances on the Therapy of Rheumatoid Arthritis with the Nanotechnology Based on Transdermal Drug Delivery System[J]. China Biotechnology, 2021, 41(2/3): 98-106.
[14] HE Wei,ZHU Lei,LIU Xin-ze,AN Xue-li,WAN Xiang-yuan. Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize[J]. China Biotechnology, 2021, 41(12): 13-23.
[15] WU Han-rong,WANG Ying,HUANG Ying-ming,LI Dong-xue,LI Zhi-fei,FANG Zi-han,FAN Lin. Promote the Innovation and Transformation of Biotechnology by Base Platform[J]. China Biotechnology, 2021, 41(12): 141-147.