Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (6): 119-128    DOI: 10.13523/j.cb.2105056
    
The Development of Antigen Testing for SARS-CoV-2
CHEN Chen1,2,HU Jin-chao1,2,CAO Shan-shan1,2,MEN Dong1,2,**()
1 State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
Download: HTML   PDF(781KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The global pandemic of COVID-19 has taken a major impact on global public health, and social and economic operations. In the case of delays in drug development and insufficient verification of vaccine effectiveness, the priority is to take a large-scale rapid screening to filter out potential infections (especially mild and asymptomatic patients), isolate those infected patients centralized to cut off transmission routes and to protect the susceptible people. Therefore, early diagnosis of SARS-CoV-2 infection is particularly important. This paper summarizes the rapid detection products toward SARS-CoV-2 antigens in the current market, analyzes the global market of rapid SARS-CoV-2 antigen detection, outlines its research and development trends, and in the end discusses the prospects for developing the capability of independent innovation in new technologies and methods for SARS-CoV-2 antigen detection in our country.



Key wordsSARS-CoV-2      In vitro diagnostic      SARS-CoV-2 antigen point-of-care testing     
Received: 10 May 2021      Published: 06 July 2021
ZTFLH:  Q819  
Corresponding Authors: Dong MEN     E-mail: d.men@wh.iov.cn
Cite this article:

CHEN Chen,HU Jin-chao,CAO Shan-shan,MEN Dong. The Development of Antigen Testing for SARS-CoV-2. China Biotechnology, 2021, 41(6): 119-128.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2105056     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I6/119

Fig.1 Specific antibody response to SARS-CoV-2 infection
样本种类 病毒核酸 病毒抗原 病毒抗体
检测方法 RT-PCR等恒温扩增 侧流免疫分析化学发光 测流免疫分析(胶体金)ELISA、化学发光
检测标本 鼻咽拭子、痰液、灌洗液 鼻咽拭子、痰液、灌洗液、尿液 血浆、血清
最早可检出
的病程时段
感染后,发病前 感染后,发病前 发病1周后
检测耗时 60~180 min 约15 min 15~180 min
阳性结果临床意义 SARS-CoV-2感染状态 SARS-CoV-2感染状态 SARS-CoV-2当前感染或近期曾经感染
特点 对实验室、仪器设备和人员要求高;检测灵敏度高、特异性好,有一定漏检率 对实验室要求低,可用于筛查,适合级层医院大规模筛查,检测速度快,有一定漏检率 对实验室要求低,取样误差小,最快15 min内出结果,既往感染诊断
特异性 约100% 95%~100% 95%~100%
灵敏度
技术难度
NMPA国内注册 27家 3家 15家
Table 1 Comparison of three detection methods for SARS-CoV-2
Fig.2 Schematic diagram of lateral flow immunoassay
国家 名称 厂家 注册时间
美国 BinaxNOW COVID-19 Ag Card Abbott Diagnostics Scarborough, Inc. 12/16/2020
Ellume COVID-19 Home Test Ellume Limited 12/16/2020
BinaxNOW COVID-19 Ag Card Home Test Abbott Diagnostics Scarborough, Inc. 12/16/2020
Clip COVID Rapid Antigen Test Luminostics, Inc. 12/07/2020
Sampinute COVID-19 Antigen MIA Celltrion USA, Inc. 10/23/2020
CareStart COVID-19 Antigen test Access Bio, Inc. 10/13/2020
Sofia 2 Flu + SARS Antigen FIA Quidel Corporation 10/02/2020
LumiraDx SARS-CoV-2 Ag Test LumiraDx UK Ltd. 08/18/2020
BD Veritor System for Rapid Detection of SARS-CoV-2 Becton, Dickinson and Company (BD) 07/23/2020
Sofia SARS Antigen FIA Quidel Corporation 07/17/2020
VITROS Immunodiagnostic Products SARS-CoV-2 Antigen Reagent Pack Qrtho Clinical Diagnostics, Inc. 01/11/2021
Status COVID-19/Flu Princeton BioMeditech Corp. 02/04/2021
Simoa SARS-CoV-2 N Protein Antigen Test Quanterix Corporation 01/05/2021
QuickVue SARS Antigen Test Quidel Corporation 12/08/2020
日本 イムノエースSARS-CoV-2 株式会社タウンズ -
エスプラインSARS-CoV-2(SARS-CoV-2抗原検出用试薬) 富士レビオ株式会社 -
クイックナビ-COVID19 Ag(10回用) デンカ株式会社 -
韩国 GenBody COVID-19 Ag GenBody Inc 07/13/2020
BIOCREDIT COVID-19 Ag RapiGEN, INC 04/21/2020
PCL COVID19 Ag Rapid FIA PCL, Inc. 03/30/2020
STANDARTMF COVID-19 Ag FIA SD Biosensor, Inc. 03/25/2020
新加坡 V-CODE ENCODE SARS-COV-2 Antigen Rapid Test Device HealthGroup Medical Pte Ltd 12/10/2020
SARS-CoV-2 Rapid Antigen Test Roche Diagnostics Asia Pacific Pte Ltd 10/19/2020
Camtech COVID-19 Antigen Rapid Test Camtech Diagnostics Pte Ltd 08/28/2020
COVID-19 Antigen Rapid Test Kit Jian Yuan Holdings Pte Ltd 08/28/2020
Sofia SARS Antigen FIA Quantum Technologies Global Pte Ltd 08/05/2020
SAVANTTMNew Coronavirus (SARS-CoV-2) N Protein Detection Kit (Fluorescence Immunochromatography) Hi-Beau Group 07/13/2020
FaStep COVID-19 Antigen Rapid Test Device
(Nasopharyngeal/Oropharyngeal Swab)
Alcotech Pte Ltd 07/07/2020
中国 新型冠状病毒(2019-nCoV)抗原检测试剂盒(胶体金法) 广州万孚生物技术股份有限公司 12/04/2020
新型冠状病毒(2019-nCoV)抗原检测试剂盒(乳胶法) 北京金沃夫生物工程科技有限公司 11/03/2020
新型冠状病毒(2019-nCoV)抗原检测试剂盒(荧光免疫层析法) 深圳华大因源医药科技有限公司 11/03/2020
Table 2 Product information of SARS-CoV-2 antigen testing
[1]   Lancet T. Emerging understandings of 2019-nCoV. Lancet, 2020, 395(10221):311.
doi: S0140-6736(20)30186-0 pmid: 31986259
[2]   Zhu N, Zhang D Y, Wang W L, et al. A novel coronavirus from patients with pneumonia in China, 2019. The New England Journal of Medicine, 2020, 382(8):727-733.
doi: 10.1056/NEJMoa2001017 pmid: 31978945
[3]   Wang C, Horby P W, Hayden F G, et al. A novel coronavirus outbreak of global health concern. Lancet, 2020, 395(10223):470-473.
doi: 10.1016/S0140-6736(20)30185-9
[4]   Tian H Y, Liu Y H, Li Y D, et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science, 2020, 368(6491):638-642.
doi: 10.1126/science.abb6105
[5]   朱民. 新冠肺炎疫情对全球经济和金融市场造成的冲击. 国际金融, 2020,(4):3-5.
[5]   Zhu M. Impact of Novel coronavirus pneumonia on global economic and financial markets. International Finance, 2020,(4):3-5.
[6]   沈淑容, 马紫程, 许以灵, 等. 新型冠状病毒境外输入对我国疫情的影响. 浙江师范大学学报(自然科学版), 2021, 44(2):197-205.
[6]   Shen S R, Ma Z C, Xu Y L, et al. Epidemic impact of overseas-imported COVID-19 infected cases on China. Journal of Zhejiang Normal University (Natural Sciences), 2021, 44(2):197-205.
[7]   Yesudhas D, Srivastava A, Gromiha M M. COVID-19 outbreak: history, mechanism, transmission, structural studies and therapeutics. Infection, 2021, 49(2):199-213.
doi: 10.1007/s15010-020-01516-2
[8]   Prather K A, Wang C C, Schooley R T. Reducing transmission of SARS-CoV-2. Science, 2020, 368(6498):1422-1424.
doi: 10.1126/science.abc6197
[9]   Huang S Z, Jin Z, Peng Z H. Studies of the strategies for controlling the COVID-19 epidemic in China: Estimation of control efficacy and suggestions for policy makers. Scientia Sinica Mathematica, 2020, 50(6):885.
doi: 10.1360/SSM-2020-0043
[10]   Niu Y, Xu F J. Deciphering the power of isolation in controlling COVID-19 outbreaks. The Lancet Global Health, 2020, 8(4):e452-e453.
doi: 10.1016/S2214-109X(20)30085-1
[11]   Shen M W, Xiao Y N, Zhuang G H, et al. Mass testing-An underexplored strategy for COVID-19 control. The Innovation, 2021, 2(2):100114.
doi: 10.1016/j.xinn.2021.100114
[12]   Kerr C C, Mistry D, Stuart R M, et al. Controlling COVID-19 via test-trace-quarantine. Nature Communications, 2021, 12:2993.
doi: 10.1038/s41467-021-23276-9
[13]   Kim D, Lee J Y, Yang J S, et al. The architecture of SARS-CoV-2 transcriptome. Cell, 2020, 181(4): 914-921.e10.
doi: 10.1016/j.cell.2020.04.011
[14]   Amanat F, Krammer F. SARS-CoV-2 vaccines: status report. Immunity, 2020, 52(4):583-589.
doi: 10.1016/j.immuni.2020.03.007
[15]   Verdecchia P, Cavallini C, Spanevello A, et al. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. European Journal of Internal Medicine, 2020, 76:14-20.
doi: S0953-6205(20)30151-5 pmid: 32336612
[16]   Azkur A K, Akdis M, Azkur D, et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy, 2020, 75(7):1564-1581.
doi: 10.1111/all.v75.7
[17]   Long Q X, Tang X J, Shi Q L, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nature Medicine, 2020, 26(8):1200-1204.
doi: 10.1038/s41591-020-0965-6
[18]   Li Y J, Ji D P, Cai W Y, et al. Clinical characteristics, cause analysis and infectivity of COVID‐19 nucleic acid repositive patients: A literature review. Journal of Medical Virology, 2021, 93(3):1288-1295.
doi: 10.1002/jmv.v93.3
[19]   Ortiz-Prado E, Simbaña-Rivera K, Gómez-Barreno L, et al. Clinical, molecular, and epidemiological characterization of the SARS-CoV-2 virus and the coronavirus disease 2019 (COVID-19), a comprehensive literature review. Diagnostic microbiology and infectious disease, 2020, 98(1):115094.
doi: S0732-8893(20)30471-5 pmid: 32623267
[20]   Arthur Ricardo Vilar Scavuzzi de Carvalho, Cezarotti Filho M L, Azevedo P C P D, et al. Epidemiology, diagnosis, treatment, and future perspectives concerning SARS-CoV-2: a review article. Revista Da Associacao Medica Brasileira (1992), 2020, 66(3):370-374.
doi: S0104-42302020000300370 pmid: 32520160
[21]   Yan Y, Chang L, Wang L N. Laboratory testing of SARS-CoV, MERS-CoV, and SARS-CoV-2 (2019-nCoV): Current status, challenges, and countermeasures. Reviews in Medical Virology, 2020, 30(3):e2106.
[22]   Ravi N, Cortade D L, Ng E, et al. Diagnostics for SARS-CoV-2 detection: a comprehensive review of the FDA-EUA COVID-19 testing landscape. Biosensors & Bioelectronics, 2020, 165:112454.
doi: 10.1016/j.bios.2020.112454
[23]   Zhang J, Ding N, Song Y Z, et al. Phylogenomic tracing of asymptomatic transmission in a COVID-19 outbreak. The Innovation, 2021, 2(2):100099.
doi: 10.1016/j.xinn.2021.100099
[24]   Jung J, Garnett E, Jariwala P, et al. Clinical performance of a semi-quantitative assay for SARS-CoV-2 IgG and SARS-CoV2 IgM antibodies. Clinica Chimica Acta, 2020, 510:790-795.
doi: 10.1016/j.cca.2020.09.023
[25]   Ayouba A, Thaurignac G, Morquin D, et al. Multiplex detection and dynamics of IgG antibodies to SARS-CoV-2 and the highly pathogenic human coronaviruses SARS-CoV and MERS-CoV. Journal of Clinical Virology, 2020, 129:104521.
doi: 10.1016/j.jcv.2020.104521
[26]   La Marca A, Capuzzo M, Paglia T, et al. Testing for SARS-CoV-2 (COVID-19): a systematic review and clinical guide to molecular and serological in-vitro diagnostic assays. Reproductive Biomedicine Online, 2020, 41(3):483-499.
doi: 10.1016/j.rbmo.2020.06.001
[27]   World Health Organization. Antigen-detection in the diagnosis of SARS-CoV-2 infection using rapid immunoassays: interim guidance-11 September 2020. Geneva: World Health Organization, 2020.
[28]   Mina M J, Peto T E, García-Fiñana M, et al. Clarifying the evidence on SARS-CoV-2 antigen rapid tests in public health responses to COVID-19. The Lancet, 2021, 397(10283):1425-1427.
doi: 10.1016/S0140-6736(21)00425-6
[29]   Bahadir E B, Sezgintürk M K. Lateral flow assays: Principles, designs and labels. TrAC Trends in Analytical Chemistry, 2016, 82:286-306.
doi: 10.1016/j.trac.2016.06.006
[30]   Oran D P, Topol E J. The proportion of SARS-CoV-2 infections that are asymptomatic. Annals of Internal Medicine, 2021, 174(5):655-662
doi: 10.7326/M20-6976
[31]   Simon V, van Bakel H, Sordillo E M. Positive, again! What to make of “re-positive” SARS-CoV-2 molecular test results. EBioMedicine, 2020, 60:103011.
doi: 10.1016/j.ebiom.2020.103011
[32]   罗银波, 吴杨, 刘漫, 等. 常态化新冠肺炎防控策略与机制的思考. 公共卫生与预防医学, 2020, 31(6):1-5.
[32]   Luo Y B, Wu Y, Liu M, et al. Thoughts on the strategy and mechanism for the regular prevention and control of COVID-19. Journal of Public Health and Preventive Medicine, 2020, 31(6):1-5.
[33]   Ghoshal S, Mitra D, Roy S, et al. Biosensors and biochips for nanomedical applications: a review. Sensors & Transducers, 2010, 113(2):1.
[34]   Vo-Dinh T, Cullum B. Biosensors and biochips: advances in biological and medical diagnostics. Fresenius’ Journal of Analytical Chemistry, 2000, 366(6-7):540-551.
doi: 10.1007/s002160051549
[35]   Slomovic S, Pardee K, Collins J J. Synthetic biology devices for in vitro and in vivo diagnostics. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(47):14429-14435.
[36]   Sposito A J, Kurdekar A, Zhao J Q, et al. Application of nanotechnology in biosensors for enhancing pathogen detection. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology, 2018, 10(5):e1512. DOI: 10.1002/wnan.1512.
[37]   Myers F B, Lee L P. Innovations in optical microfluidic technologies for point-of-care diagnostics. Lab on a Chip, 2008, 8(12):2015-2031.
doi: 10.1039/b812343h
[38]   Livingston A D, Campbell C J, Wagner E K, et al. Biochip sensors for the rapid and sensitive detection of viral disease. Genome Biology, 2005, 6(6):112.
pmid: 15960809
[39]   von Bomhard A, Elsässer A, Ritschl L M, et al. Cryopreservation of endothelial cells in various cryoprotective agents and media - vitrification versus slow freezing methods. PLoS One, 2016, 11(2):e0149660.
doi: 10.1371/journal.pone.0149660
[1] YUN Tao,GONG Yue,GU Peng,XU Bing-bing,LI Jin,ZHAO Xi-chen. Present Situation and Prospect of International S&T Cooperation between China and Countries Participating in the “Belt and Road” Initiative to Combat COVID-19[J]. China Biotechnology, 2021, 41(7): 110-121.
[2] SHI Rui,YAN Jing-hua. Research Progress of Neutralizing Antibody Drugs against SARS-CoV-2[J]. China Biotechnology, 2021, 41(6): 129-135.
[3] ZHANG Sai,WANG Gang,LIU Zhong-ming,LI Hui-jun,WANG Da-ming,QIAN Chun-gen. Development and Performance Evaluation of a Rapid Antigen Test for SARS-CoV-2[J]. China Biotechnology, 2021, 41(5): 27-34.
[4] FAN Yue-lei,WANG Yue,WANG Heng-zhe,LI Dan-dan,MAO Kai-yun. Research Progress of in Vitro Diagnostic Technologies for SARS-CoV-2[J]. China Biotechnology, 2021, 41(2/3): 150-161.
[5] WU Rui-jun,LI Zhi-fei,ZHANG Xin,PU Run,AO Yi,SUN Yan-rong. Development and Prospect of Antibody Drugs for SARS-CoV-2[J]. China Biotechnology, 2020, 40(5): 1-6.
[6] XIE Hua-ling,LV Lu-cheng,YANG Yan-ping. Patent Analysis of Global Coronavirus Vaccine[J]. China Biotechnology, 2020, 40(1-2): 57-64.
[7] PAN Tong-tong,CHEN Yong-ping. Research Progress of Key Techniques for Severe/Critical Type of Novel Coronavirus Pneumonia[J]. China Biotechnology, 2020, 40(1-2): 78-83.
[8] LIAO Xiao-yan,CHEN Li-li. The Progress in the Development of COVID-19 Vaccine[J]. China Biotechnology, 2020, 40(12): 8-17.
[9] LIN Fu-yu,LIU Jin-yi,CHENG Yong-qing. Progress of Interferon α1b Research and Clinical Use Against SARS-CoV-2[J]. China Biotechnology, 2020, 40(12): 1-7.