Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (10): 94-100    DOI: 10.13523/j.cb.20161013
    
Progress in Functions and Regulatory Mechanisms of the Transcription Factor Rex
MA Li, WU Hao, WANG Bin-bin, QIAO Jian-jun, ZHU Hong-ji
Key Laboratory of Systems Biotechnology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
Download: HTML   PDF(708KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Transcription factor Rex is a sensor of intracellular NADH/NAD+ redox state by incorporating either NADH or NAD+ in Gram-positive bacteria. In response to NADH/NAD+ ratio, Rex could control many physiological metabolisms by regulating genes expression. NAD[H], the key coenzyme in the metabolic network, could reflect the cellular redox state and influence the activity of Rex. The structures of Rex, either alone or bound with cofactor and/or DNA operator, have been determined in aerobic and anaerobic group. The regulatory mechanism of Rex and the relationship of Rex, NADH/NAD+, and target genes were revealed through comparative analysis on its structure in aerobic and anaerobic bacterial. Meanwhile, the connections of Rex with central carbon, energy metabolism, anaerobic metabolism, fermentation, biofilm formation, oxidative stress as well as cell toxicity were elucidated. In addition, further study trends and applications of Rex were discussed.



Key wordsNADH/NAD+      Rex      Protein structure      Transcription factor     
Received: 28 March 2016      Published: 25 October 2016
ZTFLH:  Q819  
Cite this article:

MA Li, WU Hao, WANG Bin-bin, QIAO Jian-jun, ZHU Hong-ji. Progress in Functions and Regulatory Mechanisms of the Transcription Factor Rex. China Biotechnology, 2016, 36(10): 94-100.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20161013     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I10/94

[1] Bitoun J P, Liao S, Yao X, et al. The redox-sensing regulator Rex modulates central carbon metabolism, stress tolerance response and biofilm formation by Streptococcus mutans. Plos One, 2012, 7(9):e44766-e44766.
[2] Dimitris B, Paget M S B. A novel sensor of NADH/NAD+ redox poise in Streptomyces coelicolor A3(2). Embo Journal, 2003, 22(18):4856-65.
[3] Lei Z, Xiaoqun N, Ravcheev D A, et al. Redox-responsive repressor Rex modulates alcohol production and oxidative stress tolerance in Clostridium acetobutylicum. Journal of Bacteriology, 2014, 196(22):3949-3963.
[4] Smita G, Yoshihiko S, Ichiro S, et al. Regulatory loop between redox sensing of the NADH/NAD(+) ratio by Rex (YdiH) and oxidation of NADH by NADH dehydrogenase Ndh in Bacillus subtilis. Journal of Bacteriology, 2006, 188(20):7062-7071.
[5] Pagels M, Fuchs S F J, Kohler C, et al. Redox sensing by a Rex-family repressor is involved in the regulation of anaerobic gene expression in Staphylococcus aureus. Molecular Microbiology, 2010, 31(3):206-211.
[6] Wietzke M, Bahl H. The redox-sensing protein Rex, a transcriptional regulator of solventogenesis in Clostridium acetobutylicum. Applied Microbiology & Biotechnology, 2012, 96(96):749-761.
[7] Chu Y, Li W, Wang J, et al. Computational insights into the binding modes of Sr-Rex with cofactor NADH/NAD+ and operator DNA. Journal of Molecular Modeling, 2013, 19(8):3143-3151.
[8] Ellen W, Bauer M C, Annika R, et al. Structure and functional properties of the Bacillus subtilis transcriptional repressor Rex. Molecular Microbiology, 2008, 69(2):466-478.
[9] Mclaughlin K J, Strain-Damerell C M, Xie K, et al. Structural basis for NADH/NAD+ redox sensing by a rex family Repressor. Molecular Cell, 2010, 38(4):563-575.
[10] Sabrina L, Kahina M, FrancOis A, et al. Lactate dehydrogenase A promotes communication between carbohydrate catabolism and virulence in Bacillus cereus. Journal of Chromatography A, 1999, 847(s 1-2):1-7.
[11] Nakamura A, Sosa A, Komori H, et al. Crystal structure of TTHA1657 (AT-rich DNA-binding protein; p25) from Thermus thermophilus HB8 at 2.16? resolution. Proteins Structure Function & Bioinformatics, 2007, 66(3):755-759.
[12] Sickmier E A, Brekasis D, Paranawithana S, et al. X-ray structure of a Rex-family repressor/NADH complex insights into the mechanism of redox sensing. Structure, 2005, 13(1):43-54.
[13] Pei J, Zhou Q, Jing Q, et al. The mechanism for regulating ethanol fermentation by redox levels in Thermoanaerobacter ethanolicus. Metabolic Engineering, 2011, 13(2):186-193.
[14] Ellen W, Ikonen T P, Matti K, et al. Small-angle X-ray scattering study of a Rex family repressor: conformational response to NADH and NAD+ binding in solution. Journal of Molecular Biology, 2011, 408(4):670-683.
[15] 裴建军. 嗜热厌氧杆菌乙醇代谢调控机理研究及代谢工程初探. 无锡:江南大学, 2011. Pei J J.Mechanism of regulation ethanol fermentation and metabolic engineering in Thermoanaerobacter ethanolicus. Wusi:Jangnan University,2011.
[16] Larsson J T, Annika R, Claes V W. Coordinated patterns of cytochrome bd and lactate dehydrogenase expression in Bacillus subtilis. Microbiology, 2005, 151(10):3323-3335.
[17] Yingying Z, Tzu-Ping K, Hong S, et al. Distinct structural features of Rex-family repressors to sense redox levels in anaerobes and aerobes. Journal of Structural Biology, 2014, 188(3):195-204.
[18] Ravcheev D A, Xiaoqing L, Haythem L, et al. Transcriptional regulation of central carbon and energy metabolism in bacteria by redox-responsive repressor Rex. Journal of Bacteriology, 2012, 194(5):1145-1157.
[19] Zhang X, Xue C, Zhao F, et al. Suitable extracellular oxidoreduction potential inhibit rex regulation and effect central carbon and energy metabolism in Saccharopolyspora spinosa. Microbial Cell Factories, 2014, 13(1):1-11.
[20] Matthew S, Yinghua C, F Marion H. Bacillus subtilis YdiH is a direct negative regulator of the cydABCD operon. Journal of Bacteriology, 2004, 186(14):4585-4595.
[21] Bitoun J P, Nguyen A H, Fan Y, et al. Transcriptional repressor Rex is involved in regulation of oxidative stress response and biofilm formation by Streptococcus mutans. Fems Microbiology Letters, 2011, 320(2):110-117.
[22] DusAnka V, Kristich C J. A Rex family transcriptional repressor influences H2O2 accumulation by Enterococcus faecalis. Journal of Bacteriology, 2013, 195(8):1815-1824.
[23] Christensen G A, Zane G M, Kazakov A E, et al. Rex (encoded by DVU_0916) in Desulfovibrio vulgaris Hildenborough is a repressor of sulfate adenylyl transferase and is regulated by NADH. Journal of Bacteriology, 2015, 197(1):29-39.
[24] Laouami S, Clair G, Armengaud J, et al. Proteomic evidences for rex regulation of metabolism in toxin-producing Bacillus cereus ATCC 14579. Plos One, 2014, 9(9):e107354-e107354.

[1] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[2] ZHAO Jiu-mei,WANG Zhe,LI Xue-ying. Role of Signal Pathways and Related Factors Regulating Cartilage Formation in Bone Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(10): 62-72.
[3] Kai-xi JI,Dan JIAO,Zhong-kui XIE,Guo YANG,Zi-yuan DUAN. Advances and Prospects of Brown Adipocyte-Specific Gene PRDM16[J]. China Biotechnology, 2019, 39(4): 84-93.
[4] Wen-ran YUE,Jun-yan YUE,Xiu-juan ZHANG,Qi YANG,Xiao-dong HAN,Rui-gang WANG,Guo-jing LI. The CiNAC1 from Caragana intermedia Promotes Transgenic Arabidopsis Leaf Senescence[J]. China Biotechnology, 2018, 38(4): 24-29.
[5] Jia-wei XU,Hua HE,Jing ZHANG,Chu-chao LEI,Hong CHENG,Yong-zhen HUANG. Research Progress on the Structure and Function of Transcription Factor KLF8 Gene[J]. China Biotechnology, 2018, 38(4): 90-95.
[6] LAI Ya-peng, DENG Ting-ting, LIU Gang, WANG Juan. The Influence of Homologous Overexpression of BglR on β-glucosidase Activities in Myceliophthora thermophila[J]. China Biotechnology, 2017, 37(7): 64-71.
[7] SUN Ze-xu, ZHAO Chen, LIAO Jun-yi, WANG Qi, XU Wei, CHEN Cheng, HUANG Wei. Suppression of Runx2 Potentiates BMP2-induced Chondrogenic Differentiation[J]. China Biotechnology, 2016, 36(4): 57-62.
[8] SHEN Peng-fei, WANG Bin, XIE Zi-kang, ZHENG Chong, QU Yu-xing. Effects of Cartilage Oligomeric Matrix Protein Overexpression on BMP-2 Induced Cell Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2016, 36(10): 1-7.
[9] LIANG Li-zhu, SUN Jia-nan, LI Kai, LIU Ming-wei, DING Chen, QIN Jun. Proteome-wide Screening of Transcription Factor DNA Binding Activity in HepG2 Cells after Oleic Acid Treatment[J]. China Biotechnology, 2015, 35(5): 22-31.
[10] HAN Shuang, YANG Zhi-li, CHEN Li-mei. Over Expression of Arabidopsis CAT Improved the Absorption and Tolerance of Gas HCHO in Tobacco[J]. China Biotechnology, 2015, 35(5): 41-48.
[11] YANG Jiang-ke, MAO Ling, ZHOU Wen-jing, CHEN Jiang-shan, HU Chen. De Novo Design and High-throughput Screening Strategy Achieved Over Expression of Yarrowia lipolytica Lipase YLL in Pichia patoris[J]. China Biotechnology, 2014, 34(8): 54-60.
[12] QIN Yao, ZHAO Hong-yan, ZHANG Wen-hang, WANG Dong-mei. Generation of Mitochondrial Transcription Factor a Knockdown Transgenic Mice[J]. China Biotechnology, 2014, 34(7): 44-48.
[13] XU An-jian, CUI Yong, ZHAO Gao-chao, WU Shan-na, LÜ Zhi, JIN Qing-e, GU Jun-chao. The Overexpression of PHP14 and Its Effect on NIH-3T3 Cells Proliferation in vitro and Anchor Independent Growth[J]. China Biotechnology, 2013, 33(6): 7-11.
[14] CHENG Zhi-yong, LIANG Wen-tong, WANG Su-yun, YAN Xiao-yan, LI Hua, WANG Bao-yan, TIAN He, WEI Yu-tao, LU Xi. Mechanism of PTEN/NF-κB/Caspase Pathway on Adriamycin Resistance Reversal in K562/ADM Cells[J]. China Biotechnology, 2013, 33(3): 54-60.
[15] SUN Hao, LU Cun-fu, GUO Yun-qian. LSD1 Regulates the Generation of Induced Pluripotent Stem Cells via Interaction with Oct4/Nanog[J]. China Biotechnology, 2012, 32(12): 25-29.