Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (10): 101-105    DOI: 10.13523/j.cb.20161014
    
Adjuvant Applications in Chlamydial Vaccine
FU Xi-zong, BAI Qin-qin, CHEN Li-li
School of Public Health, University of South China, Hengyang 421001, China
Download: HTML   PDF(381KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Chlamydiae are obligate intracellular Gram-negative bacteria that cause widespread diseases in humans. Vaccination is the most economical and effective way to control chlamydial infections. At present, the main kinds of chlamydial vaccine include subunit vaccine, vector vaccine, DNA vaccine, and so on. These vaccines often require adjuvants to enhance the immune effects. The progress of adjuvants in the applications of chlamydial vaccine are discussed.



Key wordsChlamydia      Vaccines      Adjuvants     
Received: 12 April 2016      Published: 25 October 2016
ZTFLH:  Q819  
Cite this article:

FU Xi-zong, BAI Qin-qin, CHEN Li-li. Adjuvant Applications in Chlamydial Vaccine. China Biotechnology, 2016, 36(10): 101-105.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20161014     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I10/101

[1] Sharma M,Machuy N,Böhme L,et al. HIF-1α is involved in mediating apoptosis resistance to Chlamydia trachomatis -infected cells. Cell Microbiol,2011,13(10):1573-1585.
[2] Choroszy-Król I C,Frej-Madrzak M,Jama-Kmiecik A,et al. Characteristics of the Chlamydia trachomatis species-immunopathology and infections. Adv Clin Exp Med,2012,21(6):799-808.
[3] Grayston J T,Belland R J,Byrne G I,et al. Infection with Chlamydia pneumoniae as a cause of coronary heart disease: the hypothesis is still untested. Pathog Dis,2015,73(1):1-9.
[4] Bachmann N L,Polkinghorne A,Timms P. Chlamydia genomics:providing novel insights into chlamydial biology. Trends Microbiol,2014,22(8):464-472.
[5] Schijns V E,Lavelle E C. Trends in vaccine adjuvants. Expert Rev Vaccines,2011,10(4):539-550.
[6] Helgeby A,Robson N C,Donachie A M,et al. The combined CTA1-DD/ISCOM adjuvant vector promotes priming of mucosal and systemic immunity to incorporated antigens by specific targeting of B cells. J Immunol,2006,176(6):3697-3706.
[7] Igietseme J U,Murdin A. Induction of protective immunity against Chlamydia trachomatis genital infection by a vaccine based on major outer membrane protein-lipophilic immune response-stimulating complexes. Infect Immun,2000,68(12):6798-6806.
[8] Zhang Dong-Ji,Yang X,Shen C,et al. Priming with Chlamydia trachomatis major outer membrane protei (MOMP) DNA followed by MOMP ISCOM boosting enhances protection and is associated with increased immunoglobulin A and Th1 cellular immuneresponses. Infect Immun,2000,68(6):3074-3078.
[9] Zhao J,Bagchi S,Wang C R. Type II natural killer T cells foster the antitumor activity of CpG-oligodeoxynucleotides. Oncoimmunology,2014,3(5):1-2.
[10] Cheng C,Pal S,Bettahi I,et al. Immunogenicity of a vaccine formulated with the Chlamydia trachomatis serovar F, native major outer membraneprotein in a nonhuman primate model. Vaccine,2011,29(18):3456-3464.
[11] Meoni E,Faenzi E,Frigimelica E,et al. CT043, a protective antigen that induces a CD4+ Th1 response during Chlamydia trachomatis infection in mice and humans. Infect Immun,2009,77(9):4168-4176.
[12] Vasilevsky S,Greub G,Nardelli-Haefliger D,et al. Genital Chlamydia trachomatis: understanding the roles of innate and adaptive immunity in vaccine research. Clin Microbiol Rev,2014,27(2):346-370.
[13] Cong Y,Jupelli M,Guentzel M N,et al. Intranasal immunization with chlamydial protease-like activity factor and CpG deoxynucleotides enhancesprotective immunity against genital Chlamydia muridarum infection. Vaccine,2007,25(19):3773-3780.
[14] Aguilar J C,Rodríguez E G. Vaccine adjuvants revisited. Vaccine,2007,25(19):3752-3762.
[15] 周红莉,郭丽,王健伟,等. 粘膜免疫佐剂研究进展. 中国生物工程杂志,2006,26(3):83-88. Zhou H L,Guo L,Wang J W,et al. Progress in mucosal adjuvants. China Biotechnology,2006,26(3):83-88.
[16] 齐蔓莉,王敬,刘原君,等. 白细胞介素2基因佐剂对沙眼衣原体E型DNA疫苗的免疫增效作用. 中华皮肤科杂志,2012,45(5):322-324. Qi M L,Wang J,Liu Y J,et al. Immune enhancing effects of interleukin 2 genetic adjuvant on DNA vaccine against Chlamydia trachomatis serovar E. Chinese Journal of Dermatology,2012,45(5):322-324.
[17] 谢长青,吴移谋,曾焱华,等. 肺炎嗜衣原体MOMP和人IL-2融合基因DNA疫苗的免疫原性研究. 中国人兽共患病学报,2009,25(9):837-841. Xie C Q,Wu Y M,Zeng Y H,et al. Immunogenicity of the DNA vaccine with monogene and fusion gene of the major outer membrane protein in Chlamydia pneumoniae and human IL-2. Chinese Journal of Zoonoses,2009,25(9):837-841.
[18] 赵占中,薛飞群. DNA疫苗的免疫佐剂. 中国动物传染病学报,2010,18(2):79-86. Zhao Z Z,Xue F Q. The adjuvants for DNA vaccines. Chinese Journal of Veterinary Parasitology,2010,18(2):79-86.
[19] Zhang Y,Liang S,Li X,et al. Mutual enhancement of IL-2 and IL-7 on DNA vaccine immunogenicity mainly involves regulations on their receptor expression and receptor-expressing lymphocyte generation. Vaccine,2015,33(30):3480-3487.
[20] Staats H F,Bradney C P,Gwinn W M,et al. Cytokine requirements for induction of systemic and mucosal CTL after nasal immunization. J Immunol,2001,167(9):5386-5394.
[21] 孟庆峰,徐展,王伟利. 活载体疫苗的研究进展. 黑龙江畜牧兽医,2013,19:28-31. Meng Q F,Xu Z,Wang W L. Research progress of the live vector vaccine. Heilongjiang Animal Science and Veterinary Medicine,2013,19:28-31.
[22] Zhou J,Qiu C,Cao X A,et al. Construction and immunogenicity of recombinant adenovirus expressing the major outer membrane protein (MOMP) of Chlamydophila psittaci in chicks. Vaccine,2007,25(34):6367-6372.
[23] He Q,Martinez-Sobrido L,Eko F O,et al. Live-attenuated influenza viruses as delivery vectors for Chlamydia vaccines. Immunology,2007,122(1):28-37.
[24] Penttilä T,Tammiruusu A,Liljeström P,et al. DNA immunization followed by a viral vector booster in a Chlamydia pneumoniae mouse model. Vaccine,2004,22(25-26):3386-3394.
[25] 靳小攀,季守平. 细菌菌影在DNA疫苗研究中的作用. 中国生物工程杂志,2010,30(7):92-96. Jin X P,Ji S P. Research in bacterial ghost as DNA vaccine delivery system. China Biotechnology,2010,30(7):92-96.
[26] Eko F O,Lubitz W,McMillan L,et al. Recombinant Vibrio cholerae ghosts as a delivery vehicle for vaccinating against Chlamydia trachomatis. Vaccine,2003,21(15):1694-1703.
[27] Eko F O,He Q,Brown T,et al. A novel recombinant multisubunit vaccine against Chlamydia. J Immunol,2004,173(5):3375-3382.
[28] Macmillan L,Ifere G O,He Q,et al. A recombinant multivalent combination vaccine protects against Chlamydia and genital herpes. FEMS Immunol Med Microbiol,2007,49(1):46-55.
[29] 潘青. 猪流产衣原体Pmp18N-rVCG疫苗的构建、小鼠免疫评价和机制研究. 北京:中国农业大学,2015. Pan Q. Construction and comparative evaluation of Chlamydia abortus subunit candidate vaccine rVCG-Pmpl8N in a mouse model and immune mechanism of DC pulsed with Pmpl8N. Beijing:China Agricultural University,2015.
[30] Sivakumar S M,Safhi M M,Kannadasan M,et al. Vaccine adjuvants-current status and prospects on controlled release adjuvancity. Saudi Pharm J,2011,19(4):197-206.
[31] Hansen J,Jensen K T,Follmann F,et al. Liposome delivery of Chlamydia muridarum major outer membrane protein primes a Th1 response that protects against genital chlamydial infection in a mouse model. J Infect Dis,2008,198(5):758-767.
[32] Yu H,Karunakaran K P,Jiang X,et al. Chlamydia muridarum T cell antigens and adjuvants that induce protective immunity in mice. Infect Immun,2012,80(4):1510-1518.
[33] Stary G,Olive A,Radovic-Moreno A F,et al. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells. Science,2015,348(6241):8205.
[34] Dixit S,Singh S R,Yilma A N,et al. Poly(lactic acid)-poly(ethylene glycol) nanoparticles provide sustained delivery of a Chlamydia trachomatis recombinant MOMP peptide and potentiate systemic adaptive immune responses in mice. Nanomedicine,2014,10(6):1311-1321.
[35] Fairley S J,Singh S R,Yilma A N,et al. Chlamydia trachomatis recombinant MOMP encapsulated in PLGA nanoparticles triggers primarily T helper1cellular and antibody immune responses in mice: a desirable candidate nanovaccine. Int J Nanomedicine,2013,8(1):2085-2099.

[1] ZHU Xiao-jing,WANG Rui,ZHANG Xin-xin,JIN Jia-xin,LU Wen-long,DING Da-shun,HUO Cui-mei,LI Qing-mei,SUN Ai-jun,ZHUANG Guo-qing. Construction of MDV Recombinant Vaccine Strain Integrated F Gene Using Bacterial Artificial Chromosome Technique[J]. China Biotechnology, 2021, 41(10): 33-41.
[2] XIE Hua-ling,LV Lu-cheng,YANG Yan-ping. Patent Analysis of Global Coronavirus Vaccine[J]. China Biotechnology, 2020, 40(1-2): 57-64.
[3] Yu TAO,Gao-jian LI,Jian-hong SHU,Yue-hong WU,Fang YANG,Yu-long HE. Advances in the Research of Genetically Engineering Vaccine of Mycoplasmal pneumoniae[J]. China Biotechnology, 2018, 38(2): 95-101.
[4] GUO Yang, LIN Hua. The New Development of Japanese Encephalitis Vaccine and Vaccine Research[J]. China Biotechnology, 2015, 35(10): 66-71.
[5] XIE Wen-qi, MA San-mei, WANG Yong-fei, SUN Xiao-wu. Status, Problems and Strategies of Transgenic Tomatoes for Oral Vaccine[J]. China Biotechnology, 2014, 34(10): 94-100.
[6] JIANG Na, XING Wei, MA Zhi-hong, LI Tie-liang, LUO Lin. Research Progress in Aquaculture Ghost Vaccines[J]. China Biotechnology, 2013, 33(11): 112-117.
[7] LEI Ning, ZHANG Yuan, XIAO Hai-bo, ZENG Qing-le. Determination of Protein Content of Alhydrogel-absorbed Vaccine Using O-phthalaldehyde (OPA) Fluorometric Method[J]. China Biotechnology, 2011, 31(7): 109-113.
[8] LIN Jun, LI Jian-Min, CHEN Wei. Application Status and Evaluation of Combination Vaccines[J]. China Biotechnology, 2009, 29(11): 89-93.
[9] LIU Chun-Guo, LIU Meng, LI Hong-Chao, DU Jin-Ling, ZHANG Xin-Chao, DAN Wei-Lin. Construction of DNA Vaccine Expressing H1 Subtype Swine Flu Virus HA Gene and Its Immunogenicity in Balb/c Mice[J]. China Biotechnology, 2009, 29(10): 38-43.
[10] GONG Ye-li XIA Huan-Zhang. Construction of prophylactic HPV vaccines using genetic engineering technology[J]. China Biotechnology, 2008, 28(9): 130-134.