Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (11): 100-106    DOI: 10.13523/j.cb.20141114
    
Progress in Genetic Engineering of Plant Vitamin E
CHAI Yu-qiong1, ZHANG Yu-hong2, HAN Ning1, ZHU Mu-yuan1
1. Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
2. Tibet Academy of Agricultural and Husbandry Science, Lhasa 850000, China
Download: HTML   PDF(724KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Photosynthetic organisms synthesize the amphipathic antioxidant called vitamin E which are essential components of the human diet. Tocophero1 and tocotrieno1 comprise the vitamin E class in plants. Besides the antioxidant properties, the tocotrieno1 forms of natural vitamin E also help to lower cholesterol, prevent diabetes, promote bone resorption and reduce the risk of cancer and neurological diseases. Thus vitamin E is widely used in pharmaceutical, food and cosmetic industries. In this review, current knowledge on vitamin E biosynthesis pathway and related enzymes was described. Moreover, recent studies on genetic engineering to enhance and alter vitamin E content and composition in plants were summarized. Co-expression of multiple genes in vitamin E biosynthesis pathway and plastid transformation by using synthetic multigene operons have provided new strategies to increase vitamin E production in plants.



Key wordsVitamin E      Genetic engineering      Multigene operon      Plastid transformation     
Received: 25 September 2014      Published: 25 November 2014
ZTFLH:  Q78  
Cite this article:

CHAI Yu-qiong, ZHANG Yu-hong, HAN Ning, ZHU Mu-yuan. Progress in Genetic Engineering of Plant Vitamin E. China Biotechnology, 2014, 34(11): 100-106.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20141114     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I11/100


[1] Hofius D, Sonnewald U. Vitamin E biosynthesis: biochemistry meets cell biology. TRENDS in Plant Science, 2003, 8(1): 6-8.

[2] Zingg J M. Vitamin E: an overview of major research directions. Molecular Aspects of Medicine, 2007, 28(5-6): 400-422.

[3] Ros E. Nuts and novel biomarkers of cardiovascular disease. Am J Clin Nutr, 2009, 89(5): 1649S-1656S.

[4] Zhang C X, Ho S C, Chen Y M, et al. Greater vegetable and fruit intake is associated with a lower risk of breast cancer among Chinese women. Int J Cancer, 2009, 125(1): 181-188.

[5] 黄筱生. 天然维生素E与人体健康. 中国油脂, 2003, 28(1):35-36. Huang X S. Natural vitamin E and health. China Oils and Fats, 2003, 28(1):35-36.

[6] Semchuk N M, Lushchak O V, Falk J, et al. Inactivation of genes, encoding tocopherol biosynthetic pathway enzymes, results in oxidative stress in outdoor grown Arabidopsis thaliana. Plant Physiol Biochem, 2009, 47(5): 384-390.

[7] Foyer C H, Noctor G.. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell, 2005, 17(7):1866-1875.

[8] Falk J, Munne-Bosch S. Tocochromanol functions in plants: antioxidation and beyond. J Exp Bot, 2010, 61(6): 1549-1566.

[9] Sen C K, Khanna S, Roy S. Tocotrienols in health and disease: the other half of the natural vitamin E family. Mol Aspects Med, 2007, 28(5-6): 692-728.

[10] Aggarwal B B, Sundaram C, Prasad S, et al. Tocotrienols, the vitamin E of the 21st century: its potential against cancer and other chronic diseases. Biochem Pharmacol, 2010, 80(11): 1613-1631.

[11] 张玉红, 巴桑玉珍, 寿建昕, 等. 不同基因型大麦品种大麦油及其母育酚含量的变异规律. 麦类作物学报, 2007, 27 (4): 721 -724. Zhang Y H, BaSang Y Z, Shou J X, et al. Variability of oil and tocol content in different barley cultivars. Journal of Triticeae Crops, 2007, 27 (4): 721 -724.

[12] Yang W, Cahoon R E, Hunter S C, et al. Vitamin E biosynthesis: functional characterization of the monocot homogentisate geranylgeranyl transferase. Plant J, 2011, 65(2): 206-217.

[13] Hunter S C, Cahoon E B. Enhancing vitamin E in oilseeds: unraveling tocopherol and tocotrienol biosynthesis. Lipids, 2007, 42(2): 97-108.

[14] 钱文成, 陶苏丹, 陈德富, 等. 植物维生素E代谢工程研究. 生物学通报, 2006, 41(12):13-15. Qian W C, Tao S D, Chen D F, et al. Progress of plant Vitamin E metabolic engineering. Bulletin of Biology, 2006, 41(12):13-15.

[15] Fitzpatrick T B, Basset G J, Borel P, et al. Vitamin deficiencies in humans: can plant science help?. Plant Cell, 2012, 24(2): 395-414.

[16] 胡英考. 植物维生素E合成及其生物技术改良. 中国生物工程杂志, 2004, 24(1):32-35. Hu Y K. Molecular biology and biotechnology improvement of vitamin E biosynthesis in plant. China Biotechnology, 2004, 24(1):32-35.

[17] Li Y, Zhou Y, Wang Z, et al. Engineering tocopherol biosynthetic pathway in Arabidopsis leaves and its effect on antioxidant metabolism. Plant Science, 2010, 178(3): 312-320.

[18] Harish M C, Dachinamoorthy P, Balamurugan S, et al. Overexpression of homogentisate phytyltransferase (HPT) and tocopherol cyclase (TC) enhances α-tocopherol content in transgenic tobacco. Biologia Plantarum, 2012, 57(2): 395-400.

[19] Collakova E, Dellapenna D. Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis. Plant Physiol, 2003, 131(2): 632-642.

[20] Lu Y, Rijzaani H, Karcher D, et al. Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proc Natl Acad Sci U S A, 2013, 110(8): E623-632.

[21] Cahoon E B, Hall S E, Ripp K G, et al. Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotechnol, 2003, 21(9): 1082-1087.

[22] Kanwischer M, Porfirova S, Bergmuller E, et al. Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol, 2005, 137(2): 713-723.

[23] Zhang C, Cahoon R E, Hunter S C, et al. Genetic and biochemical basis for alternative routes of tocotrienol biosynthesis for enhanced vitamin E antioxidant production. Plant J, 2013, 73(4): 628-639.

[24] Rippert P, Scimemi C, Dubald M, et al. Engineering plant shikimate pathway for production of tocotrienol and improving herbicide resistance. Plant Physiol, 2004, 134(1): 92-100.

[25] Farre G, Sudhakar D, Naqvi S, et al. Transgenic rice grains expressing a heterologous rho-hydroxyphenylpyruvate dioxygenase shift tocopherol synthesis from the gamma to the alpha isoform without increasing absolute tocopherol levels. Transgenic Res, 2012, 21(5): 1093-1097.

[26] Tavva V S, Kim Y H, Kagan I A, et al. Increased alpha-tocopherol content in soybean seed overexpressing the Perilla frutescens gamma-tocopherol methyltransferase gene. Plant Cell Rep, 2007, 26(1): 61-70.

[27] Yusuf M A, Sarin N B. Antioxidant value addition in human diets: genetic transformation of Brassica juncea with gamma-TMT gene for increased alpha-tocopherol content. Transgenic Res, 2007, 16(1): 109-113.

[28] Karunanandaa B, Qi Q, Hao M, et al. Metabolically engineered oilseed crops with enhanced seed tocopherol. Metab Eng, 2005, 7(5-6): 384-400.

[29] Falk J, Krauβ N, Dähnhardt D, et al. The senescence associated gene of barley encoding 4-hydroxyphenylpyruvate dioxygenase is expressed during oxidative stress. Journal of Plant Physiology, 2002, 159(11): 1245-1253.

[30] Tsegaye Y, K.Shintani D, DellaPenna D, et al. Overexpression of the enzyme p-hydroxyphenolpyruvate dioxygenase in Arabidopsis and its relation to tocopherol biosynthesis. Plant Physiol. Biochem, 2002, 40: 913-920.

[31] Falk J, Brosch M, Schafer A, et al. Characterization of transplastomic tobacco plants with a plastid localized barley 4-hydroxyphenylpyruvate dioxygenase. J Plant Physiol, 2005, 162(7): 738-742.

[32] Kramer C M, Launis K L, Traber M G, et al. Vitamin E levels in soybean (Glycine max L. Merr.) expressing a p-hydroxyphenylpyruvate gene from oat (Avena sativa L.). J Agric Food Chem, 2014, 62(15): 3453-3457.

[33] Ren W, Zhao L, Zhang L, et al. Molecular cloning and characterization of 4-hydroxyphenylpyruvate dioxygenase gene from Lactuca sativa. J Plant Physiol, 2011, 168(10): 1076-1083.

[34] Collakova E, Dellapenna D. Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiology, 2001, 127(3): 1113-1124.

[35] Savidge B, Weiss J D, Wong Y H, et al. Isolation and characterization of homogentisate phytyltransferase genes from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol, 2002, 129(1): 321-332.

[36] Sattler S E. Vitamin E is essential for seed iongevity and for preventing lipid peroxidation during germination. The Plant Cell Online, 2004, 16(6): 1419-1432.

[37] Collakova E, Dellapenna D. The role of homogentisate phytyltransferase and other tocopherol pathway enzymes in the regulation of tocopherol synthesis during abiotic stress. Plant Physiol, 2003, 133(2): 930-940.

[38] Van Eenennaam A L, Lincoln K, Durrett T P, et al. Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell, 2003, 15(12): 3007-3019.

[39] Ischebeck T, Zbierzak A M, Kanwischer M, et al. A salvage pathway for phytol metabolism in Arabidopsis. Journal of Biological Chemistry, 2005, 281(5): 2470-2477.

[40] Valentin H E, Lincoln K, Moshiri F, et al. The Arabidopsis vitamin E pathway gene5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Plant Cell, 2006, 18(1): 212-224.

[41] 孙昱, 吴文忠, 李延志, 等. 一种天然维生素E微囊的制备及其性能表征. 大连工业大学学报, 2011, 30(6):400-403. Sun Y, Wu W Z, Li Y Z, et al. Microencapsulation and characterization of natural vitamin E. Journal of Dalian Polytechnic University, 2011, 30(6):400-403.

[42] 马云标, 朱科学, 周惠明. 维生素E微胶囊的理化性质表征. 中国油脂, 2010, 35(1):55-59. Ma Y B, Zhu K X, Zhou H M. Physicochemical characteristics of microencapsulated vitamin E. China Oils and Fats, 2010, 35(1):55-59.

[1] LIU Di,ZHANG Hong-chun. Advances in Genetically Engineered Animal Models of Chronic Obstructive Pulmonary Disease[J]. China Biotechnology, 2020, 40(4): 59-68.
[2] CHEN Chun-lin,QIN Song,SONG Wan-lin,LIU Zhi-dan,LIU Zheng-yi. Progress on Biological Preparation of Alginate Oligosaccharides[J]. China Biotechnology, 2020, 40(10): 85-95.
[3] Shu-xia MA,Ling ZHANG,Jin-fei YAN,Song YOU. Study on the Synthesis of Polyunsaturated Fatty Acids by FattyAcid Synthase Pathway of Schizochytrium sp.[J]. China Biotechnology, 2018, 38(9): 27-34.
[4] Xue-ting HE,Min-hua ZHANG,Jie-fang HONG,Yuan-yuan MA. Research Progress on Butanol-Tolerant Strain and Tolerance Mechanism of Escherichia coli[J]. China Biotechnology, 2018, 38(9): 81-87.
[5] Suo-wei WU,Xiang-yuan WAN. Construction of Male-sterility System Using Biotechnology and Application in Crop Breeding and Hybrid Seed Production[J]. China Biotechnology, 2018, 38(1): 78-87.
[6] GAO Jiao-jiao, YANG Shu-lin. Advances in Optimization of Hyaluronic Acid Production by Genetic Engineering Technology[J]. China Biotechnology, 2017, 37(8): 72-77.
[7] WANG De-hua, MA Yi, HAN Lei, XIAO Xing, LI Yan-wei, DANG Shi-ying, FAN Zhi-yong, WEN Tao, HONG An. Preparation of Novel Recombinant PACAP Derivative MPL-2 and Its Effect on Anti-type 2 Diabetes Mellitus[J]. China Biotechnology, 2017, 37(5): 59-65.
[8] CHEN Jing, KANG Ci-ming, LUO Wen-xin. Advance in Research on Antibody Half-Life Related Engineering[J]. China Biotechnology, 2017, 37(5): 87-96.
[9] GAN Chun-yang, LIU Ya, LUO Ying-ying, ZHANG Wen-lu, HUANG Ai-long, CAI Xue-fei, HU Jie-li. A Cloning Strategy Suitable for DNA Modification by Fragment Scanning[J]. China Biotechnology, 2016, 36(8): 55-63.
[10] LIU Ting-ting, LIANG Zi-qiang, LIANG Shi-ke, GUO Ji-xing, WANG Fang-hai. Research Advances of Producing Spider Silk by Biotechnology[J]. China Biotechnology, 2016, 36(5): 132-137.
[11] FANG Shi-xiong, MA Yi, SHEN Shu-tao, ZHAO Shao-jun, HONG An. Efficient Preparation of TNFα Derivatives TRSP10 and Preliminary Study of Its Inhibitory Effect on Prostate Cancer DU145 Cells[J]. China Biotechnology, 2015, 35(4): 11-16.
[12] WU Meng, LIU Zuo-hua, LIN Bao-zhong, LAN Guo-cheng, ZOU Xian-gang, GE Liang-peng. Recent Progress in Transgenic Pigs[J]. China Biotechnology, 2015, 35(3): 92-98.
[13] JIANG Yan-chao, JIANG Shi-yun, FU Feng-ming, HUANG Kai, KANG Xing-xin, XU Dan. Advance in Research on HA Biosynthesis and Gene Engineering[J]. China Biotechnology, 2015, 35(1): 104-110.
[14] ZHAO Guo-ling, TAO Xin-yi, WANG Feng-qing, WEI Dong-zhi. The Construction and Application of EchDA Genetic Engineering Bacteria[J]. China Biotechnology, 2015, 35(1): 67-74.
[15] WANG Wei-wei, Tang Liang, ZHOU Wen-long, YANG Yan, GAO Bo, ZHAO Yun-Feng, WANG Wei. Progress in the Biosynthesis and Metabolism of Glutathione[J]. China Biotechnology, 2014, 34(7): 89-95.