Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (8): 72-77    DOI: 10.13523/j.cb.20170811
    
Advances in Optimization of Hyaluronic Acid Production by Genetic Engineering Technology
GAO Jiao-jiao, YANG Shu-lin
School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Download: HTML   PDF(422KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Hyaluronic acid is a linear acid mucopolysaccharide composed of repeating disaccharide glucuronic acid and N-acetyl-glucosamine units, which is widely used in medicine, cosmetics, food and other fields. Traditional studies have made significant achievements in improving the production of hyaluronic acid by optimizing the fermentation parameters, but have reached the upper limit, and the natural strains have the increasing disadvantages of high cost of fermentation medium and pathogenicity. With the rapid development of molecular biology technology and the continuous research on the genes related to hyaluronic acid synthesis, the research focus has gradually shifted to the use of genetic engineering technology to construct high yield, safe and specific molecular weight hyaluronan genetically engineered strains. Here the strategies and research progress of genetic engineering for the production of hyaluronic acid were reviewed.

Key wordsGenetic engineering      Hyaluronic acid      Polysaccharide      Molecular weight     
Received: 05 May 2017      Published: 25 August 2017
ZTFLH:  TQ281  
Cite this article:

GAO Jiao-jiao, YANG Shu-lin. Advances in Optimization of Hyaluronic Acid Production by Genetic Engineering Technology. China Biotechnology, 2017, 37(8): 72-77.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20170811     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I8/72

[1] Vigetti D, Karousou E, Viola M, et al. Hyaluronan:biosynthesis and signaling. Biochim Biophys Acta, 2014, 1840(8):2452-2459.
[2] Viola M, Vigetti D, Karousou E, et al. Biology and biotechnology of hyaluronan. Glycoconjugate Journal, 2015, 32(3):93-103.
[3] Anderegg U, Simon J C, Averbeck M. More than just a filler——the role of hyaluronan for skin homeostasis. Exp Dermatol, 2014, 23(5):295-303.
[4] Ammar T Y, Pereira T A, Mistura S L, et al. Viscosupplementation for treating knee osteoarthrosis:review of the literature. Rev Bras Ortop, 2015, 50(5):489-494.
[5] Mencucci R, Boccalini C, Caputo R, et al. Effect of a hyaluronic acid and carboxymethylcellulose ophthalmic solution on ocular comfort and tear-film instability after cataract surgery. J Cataract Refract Surg, 2015, 41(8):1699-1704.
[6] Nesti L J, Li W J, Shanti R M, et al. Intervertebral disc tissue engineering using a novel hyaluronic acid-nanofibrous scaffold (HANFS) amalgam. Tissue Eng Part A, 2008, 14(9):1527-1537.
[7] Robert L. Hyaluronan, a truly "youthful" polysaccharide. Its medical applications. Pathologie Biologie, 2015, 63(1):32-34.
[8] Ghosh S, Hoselton S A, Dorsam G P, et al. Hyaluronan fragments as mediators of inflammation in allergic pulmonary disease. Immunobiology, 2015, 220(5):575-588.
[9] De Oliveira J D, Carvalho L S, Gomes A M, et al. Genetic basis for hyper production of hyaluronic acid in natural and engineered microorganisms. Microb Cell Fact, 2016, 15(1):119.
[10] Blank L M, Hugenholtz P, Nielsen L K. Evolution of the hyaluronic acid synthesis (has) operon in Streptococcus zooepidemicus and other pathogenic streptococci. J Mol Evol, 2008, 67(1):13-22.
[11] Marcellin E, Steen J A, Nielsen L K. Insight into hyaluronic acid molecular weight control. Appl Microbiol Biotechnol, 2014, 98(16):6947-6956.
[12] Sheng J Z, Ling P X, Zhu X Q, et al. Use of induction promoters to regulate hyaluronan synthase and UDP-glucose-6-dehydrogenase of Streptococcus zooepidemicus expression in Lactococcus lactis:a case study of the regulation mechanism of hyaluronic acid polymer. J Appl Microbiol, 2009, 107(1):136-144.
[13] Aya K L, Stern R, Chen W Y. Hyaluronan in wound healing:rediscovering a major player.Wound Repair Regen, 2014, 22(5):579-593.
[14] Yuan P, Lv M, Jin P, et al. Enzymatic production of specifically distributed hyaluronan oligosaccharides. Carbohydr Polym, 2015, 129:194-200.
[15] Chen W Y, Marcellin E, Hung J, et al. Hyaluronan molecular weight is controlled by UDP-N-acetylglucosamine concentration in Streptococcus zooepidemicus. J Biol Chem, 2009, 284(27):18007-18014.
[16] Marcellin E, Nielsen L K, Abeydeera P, et al. Quantitative analysis of intracellular sugar phosphates and sugar nucleotides in encapsulated streptococci using HPAEC-PAD. Biotechnol J, 2009, 4(1):58-63.
[17] Tlapak-Simmons V L, Baggenstoss B A, Kumari K, et al. Kinetic characterization of the recombinant hyaluronan synthases from Streptococcus pyogenes and Streptococcus equisimilis. J Bio Chem, 1999, 274(7):4246-4253.
[18] Marcellin E, Chen W Y, Nielsen L K. Understanding plasmid effect on hyaluronic acid molecular weight produced by Streptococcus equi subsp. zooepidemicus. Metabolic Engineering, 2010, 12(1):62-69.
[19] Chen W Y, Marcellin E, Steen J A, et al. The role of hyaluronic acid precursor concentrations in molecular weight control in Streptococcus zooepidemicus. Mol Biotechnol, 2014, 56(2):147-156.
[20] Hmar R V, Prasad S B, Jayaraman G, et al. Chromosomal integration of hyaluronic acid synthesis (has) genes enhances the molecular weight of hyaluronan produced in Lactococcus lactis. Biotechnol J, 2014, 9(12):1554-1564.
[21] Swaminathan J, Ramachandran K B. Influence of competing metabolic processes on the molecular weight of hyaluronic acid synthesized by Streptococcus zooepidemicus. Biochemical Engineering Journal, 2010, 48(2):148-158.
[22] Jokela T A, Jauhiainen M, Auriola S, et al. Mannose inhibits hyaluronan synthesis by down-regulation of the cellular pool of UDP-N-acetylhexosamines. J Biol Chem, 2008, 283(12):7666-7673.
[23] Badle S S, Jayaraman G, Ramachandran K B. Ratio of intracellular precursors concentration and their flux influences hyaluronic acid molecular weight in Streptococcus zooepidemicus and recombinant Lactococcus lactis. Bioresour Technol, 2014, 163:222-227.
[24] Kumari K, Weigel P H. Molecular cloning, expression, and characterization of the authentic hyaluronan synthase from Group C Streptococcus equisimilis. J Biol Chem, 1997, 272(51):32539-32546.
[25] Jia Y N, Zhu J, Chen X F, et al. Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights. Bioresour Technol, 2013, 132:427-431.
[26] Zhang L, Huang H, Wang H, et al. Rapid evolution of hyaluronan synthase to improve hyaluronan production and molecular mass in Bacillus subtilis. Biotechnol Lett, 2016, 38(12):2103-2108.
[27] Medina A P, Lin J L, Weigel P H. Hyaluronan synthase mediates dye translocation across liposomal membranes. BMC Biochemistry, 2012, 13(2):1-9.
[28] Weigel P H, Baggenstoss B A. Hyaluronan synthase polymerizing activity and control of product size are discrete enzyme functions that can be uncoupled by mutagenesis of conserved cysteines. Glycobiology, 2012, 22(10):1302-1310.
[29] Jeong E, Shim W Y, Kim J H. Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight. J Biotechnol, 2014, 185:28-36.
[30] Jin P, Kang Z, Yuan P, et al. Production of specific-molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168. Metab Eng, 2016, 35:21-30.
[31] DeAngelis P L, Oatman L C, Gay D F. Rapid chemoenzymatic synthesis of monodisperse hyaluronan oligosaccharides with immobilized enzyme reactors. J Biol Chem, 2003, 278(37):35199-35203.
[32] Boltje T J, Buskas T, Boons G J. Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nat Chem, 2009, 1(8):611-622.
[33] Chien L J, Lee C K. Enhanced hyaluronic acid production in Bacillus subtilis by coexpressing bacterial hemoglobin. Biotechnol Prog, 2007, 23(5):1017-1022.
[34] Prasad S B, Jayaraman G, Ramachandran K B. Hyaluronic acid production is enhanced by the additional co-expression of UDP-glucose pyrophosphorylase in Lactococcus lactis. Appl Microbiol Biotechnol, 2010, 86(1):273-283.
[35] Widner B, Behr R, Von Dollen S, et al. Hyaluronic acid production in Bacillus subtilis. Appl Environ Microbiol, 2005, 71(7):3747-3752.
[36] Izawa N, Serata M, Sone T, et al. Hyaluronic acid production by recombinant Streptococcus thermophilus. J Biosci Bioeng, 2011, 111(6):665-670.
[37] 张晋宇. 表达phbCAB基因对兽疫链球菌中乳酸及透明质酸产量的影响. 北京:清华大学生命科学与技术系, 2005. Zhang J Y. Effect of expressing PHB synthesis genes phbCAB gene on production of latate and hyaluronic acid by Streptococcus zooepidemicus. Beijing:Tsinghua University, Department of life science and technology, 2005.
[38] Wu X M, Gao H J, Tian G, et al. Transformation of Streptococcus zooepidemicus with genes responsible for polyhydroxybutrate synthesis. Tsinghua Science and Technology, 2002, 7(4):387-392.
[39] Chong B F, Nielsen L K. Amplifying the cellular reduction potential of Streptococcus zooepidemicus. J Biotechnol, 2003, 100(1):33-41.
[40] Kaur M, Jayaraman G. Hyaluronan production and molecular weight is enhanced in pathway-engineered strains of lactate dehydrogenase-deficient Lactococcus lactis. Metab Eng Commun, 2016, 3:15-23.
[41] Ma Z, Geng J, Yi L, et al. Insight into the specific virulence related genes and toxin-antitoxin virulent pathogenicity islands in swine streptococcosis pathogen Streptococcus equi ssp. zooepidemicus strain ATCC35246. BMC Genomics, 2013, 14:377.
[42] 刘玉川, 李宇兴, 赖永勤,等. 透明质酸生产菌溶血素S基因缺失突变菌株的构建及其特性. 微生物学报, 2016, 56(11):1755-1765. Liu Y C, Li Y X, Lai Y Q, et al. Construction and characterization of hemolysin S gene mutant strain producing hyaluronic acid. Acta Microbiologica Sinica, 2016, 56(11):1755-1765.
[43] Prasad S B, Ramachandran K B, Jayaraman G. Transcription analysis of hyaluronan biosynthesis genes in Streptococcus zooepidemicus and metabolically engineered Lactococcus lactis. Appl Microbiol Biotechnol, 2012, 94(6):1593-1607.
[44] Yu H, Stephanopoulos G. Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid. Metab Eng, 2008, 10(1):24-32.
[45] Deangelist P L, Achyuthan A M. Yeast-derived recombinant DG42 protein of Xenopus can synthesize hyaluronan in vitro. J Biol Chem, 1996, 271(39):23657-23660.
[46] Cheng F, Gong Q, Yu H, et al. High-titer biosynthesis of hyaluronic acid by recombinant Corynebacterium glutamicum. Biotechnol J, 2016, 11(4):574-584.
[47] Sze J H, Brownlie J C, Love C A. Biotechnological production of hyaluronic acid:a mini review. Biotech, 2016, 6(1):67.
[48] Jin P, Zhang L, Yuan P, et al. Efficient biosynthesis of polysaccharides chondroitin and heparosan by metabolically engineered Bacillus subtilis. Carbohydr Polym, 2016, 140:424-432.
[49] Tlustá M, Krahulec J, Pepeliaev S. Production of hyaluronic acid by mutant strains of group C Streptococcus. Mol Biotechnol, 2013, 54(3):747-755.
[1] ZHENG Jie,WU Hao,QIAO Jian-jun,ZHU Hong-ji. Research Progress of Capsular Polysaccharides in Gram-positive Bacteria[J]. China Biotechnology, 2021, 41(7): 91-98.
[2] CHEN Yu-qiong,TAN Wen-hua,LIU Hai-feng,CHEN Gen. Protective Effect of miR-29a on Lipopolysaccharide-induced Human Pulmonary Microvascular Endothelial Cells Injury by Targeting PTEN Expression[J]. China Biotechnology, 2021, 41(5): 8-16.
[3] CHEN Dong,LI Cheng-cheng,SHI Zhong-ping. Lactobacillus plantarum Exopolysaccharide Coated High-Stable Selenium Nanoparticles and Its Antioxidant Activity[J]. China Biotechnology, 2020, 40(9): 18-27.
[4] LIU Di,ZHANG Hong-chun. Advances in Genetically Engineered Animal Models of Chronic Obstructive Pulmonary Disease[J]. China Biotechnology, 2020, 40(4): 59-68.
[5] CHEN Chun-lin,QIN Song,SONG Wan-lin,LIU Zhi-dan,LIU Zheng-yi. Progress on Biological Preparation of Alginate Oligosaccharides[J]. China Biotechnology, 2020, 40(10): 85-95.
[6] SU Yi,JIANG Ling-li,LIN Jun-sheng. Characterization of the Affinity Between Low Molecular Weight Targets and Their Aptamers[J]. China Biotechnology, 2019, 39(11): 96-104.
[7] Shu-xia MA,Ling ZHANG,Jin-fei YAN,Song YOU. Study on the Synthesis of Polyunsaturated Fatty Acids by FattyAcid Synthase Pathway of Schizochytrium sp.[J]. China Biotechnology, 2018, 38(9): 27-34.
[8] Xue-ting HE,Min-hua ZHANG,Jie-fang HONG,Yuan-yuan MA. Research Progress on Butanol-Tolerant Strain and Tolerance Mechanism of Escherichia coli[J]. China Biotechnology, 2018, 38(9): 81-87.
[9] Si-teng DUAN,Guang-ran LI,Yi-yong MA,Yu-jia QIU,Yu LI,Wei WANG. Study on Physicochemical Properties and Biocompatibility of Injectable Chitosan-hyaluronic Acid Hydrogel Loaded with NGF[J]. China Biotechnology, 2018, 38(4): 70-77.
[10] Suo-wei WU,Xiang-yuan WAN. Construction of Male-sterility System Using Biotechnology and Application in Crop Breeding and Hybrid Seed Production[J]. China Biotechnology, 2018, 38(1): 78-87.
[11] FENG Yuan, TANG Yun, XU Lei, TAN Hai-gang. Algal Polysaccharides Inhibits Proliferation and Migration of Liver Cancer Cell Hep3B Via Down-regulation of EMP Pathway[J]. China Biotechnology, 2017, 37(9): 31-40.
[12] ZHOU Zhi-yu, WANG Rong-hua, JIN Sheng-zhen, WANG Hong-quan, XIAO Tiao-yi. The Expression Characteristics of IgM,C3 and LSZ in the Offspring from Female Ctenopharyngodon idella Immuned by Astragalus Polysaccharides[J]. China Biotechnology, 2017, 37(7): 34-41.
[13] WANG De-hua, MA Yi, HAN Lei, XIAO Xing, LI Yan-wei, DANG Shi-ying, FAN Zhi-yong, WEN Tao, HONG An. Preparation of Novel Recombinant PACAP Derivative MPL-2 and Its Effect on Anti-type 2 Diabetes Mellitus[J]. China Biotechnology, 2017, 37(5): 59-65.
[14] CHEN Jing, KANG Ci-ming, LUO Wen-xin. Advance in Research on Antibody Half-Life Related Engineering[J]. China Biotechnology, 2017, 37(5): 87-96.
[15] GAO Jiao-jiao, YANG Shu-lin. Advances in the Production of High Molecular Weight Hyaluronic Acid by Microbial Fermentation[J]. China Biotechnology, 2017, 37(5): 118-125.