Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (1): 78-87    DOI: 10.13523/j.cb.20180110
Orginal Article     
Construction of Male-sterility System Using Biotechnology and Application in Crop Breeding and Hybrid Seed Production
Suo-wei WU1,2,Xiang-yuan WAN1,2()
1 Advanced Biotechnology and Application Research Center, Institute of Biology and Agriculture, School of Chemistry and Biological Engineering,University of Science and Technology Beijing, Beijing 100024, China
2 Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
Download: HTML   PDF(2014KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Male sterility plays an important role in hybrid vigor utilization and hybrid seed production in crops. The three-line system and two-line system based on cytoplasmic male sterility and photo-thermo sensitive male sterility had been widely used in crop hybrid seed production. But there are some limitations such as low efficiency of germplasm utilization, unstable fertility in variable environmental condition. In the last three decades, many artificial manipulations of male sterility in plants have been accomplished by using genetic engineering or biotechnology strategies. The reported approaches used for generating artificial biotechnology male-sterile lines in the main three crops such as maize, rice and wheat are outlined. Especially, detail the multi-control sterility (MCS) system in maize designed by our laboratory recently is described. This will give some insights on the commercial application of male sterility in crop breeding and hybrid seed production.



Key wordsMale sterility      Genetic engineering      Hybrid vigor      Maize      Rice      Wheat     
Received: 30 November 2017      Published: 31 January 2018
ZTFLH:  Q785  
Cite this article:

Suo-wei WU,Xiang-yuan WAN. Construction of Male-sterility System Using Biotechnology and Application in Crop Breeding and Hybrid Seed Production. China Biotechnology, 2018, 38(1): 78-87.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180110     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I1/78

Fig.1 The technological strategy of maize multi-control sterility system
No.Gene nameCoded proteinsReferences
1ms1, male sterility1LOB/LBD protein 30[10]
2ms7, male sterility7PHD-finger protein[2, 11]
3ms30, male sterility30GDSL-Lipase[12]
4ms33, male sterility33GPAT protein[13]
Table 1 The cloned male sterility genes for construction of the MCS system in maize in our lab
ConstructsPromoter-gene combinationReferences
pMCS0101p35S∷Bar//pZmMs1:ZmMs1//pZm13∷Dam//pPG47∷Bt1:ZmAA//pLTP2∷mCherry[14]
pMCS0102p35S∷Bar//pPG47∷Bt1:ZmAA//pZmMs1∷ZmMs1//pLTP2∷DsRed2[14]
pMCS0701p35S∷Bar//pZmMs7:ZmMs7//pZm13∷Dam//pPG47∷Bt1:ZmAA//pLTP2∷mCherry[15]
pMCS0702p35S∷Bar//pPG47∷Bt1:ZmAA//pZmMs7∷ZmMs7//pLTP2∷DsRed2[15]
pMCS0703p35S∷Bar//pPG47∷Bt1:ZmAA//pZm13∷Dam//pZmMs7∷ZmMs7//pLTP2∷DsRed2[15]
pMCS3001p35S∷Bar//pZmMs30:ZmMs30//pZm13∷Dam//pPG47∷Bt1:ZmAA//pLTP2∷mCherry[16]
pMCS3002p35S∷Bar//pPG47∷Bt1:ZmAA//pZmMs30∷ZmMs30//pLTP2∷DsRed2[16]
pMCS3003p35S∷Bar//pPG47∷Bt1:ZmAA//pZm13∷Dam//pZmMs30∷ZmMs30//pLTP2∷DsRed2[16]
pMCS3301p35S∷Bar//pZmMs33:ZmMs33//pZm13∷Dam//pLTP2∷mCherry
pMCS3302p35S∷Bar//pPG47∷Bt1:ZmAA//pZm13∷Dam//pZmMs33∷ZmMs33//pLTP2∷DsRed2
Table 2 Commercial constructs for development of the MCS system using male sterility genes
Fig.2 Phenotype of three ZmMs7 transgenic maize male-sterile maintainer lines (BC2F1)(a), (c) and (e) Ear photos of the three male-sterile maintainer lines (1601#, 1602# and 1603#) under bright light (BL) (b), (d) and (f) The ear photos corresponding to (a), (c) and (e) Under a red fluorescence (RF) filter, respectively. These lines are the BC2F1 progeny of the elite line M0701-2 crossed with ms7-6007 mutant and then backcrossed to inbred line Zheng58. BC2F1 is the second backcross generation. Bars = 1cm
Fig.3 The panicle phenotype of three rice male-sterility maintainer lines(a), (b) and (c) the panicles of three independent rice male-sterility maintainer lines in the paddy field. In each panicle. the red fluorescence seeds are transgenic male-sterility maintainer lines, the normal color seeds are non-transgenic male-sterility lines
Fig.4 The experimental design of the split-gene system for hybrid wheat seed production
Fig.5 The schematic representation of the MCS and SPT process with commercial hybrid seed production
[1]   Shukla P, Singh N K, Gautam R, et al. Molecular approaches for manipulating male sterility and strategies for fertility restoration in plants. Mol Biotechnol, 2017,59(9-10): 445-457.
doi: 10.1007/s12033-017-0027-6
[2]   Zhang D F, Wu S W, An X L, et al. Construction of a multi-control sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnol J. [2017-11-30]. .
[3]   Wu Y, Fox T W, Trimnell M R, et al.Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops. Plant Biotechnol J, 2016, 14(3): 1046-1054.
doi: 10.1111/pbi.12477 pmid: 26442654
[4]   Fox T, DeBruin J, Haug Collet K, et al. A single point mutation in Ms44 results in dominant male sterility and improves nitrogen use efficiency in maize. Plant Biotechnol J, 2017, 15(8): 942-952.
doi: 10.1111/pbi.12689 pmid: 28055137
[5]   Chang Z, Chen Z, Wang N, et al.Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene. Proceedings of the National Academy of Sciences, 2016, 113(49): 14145-14150.
doi: 10.1073/pnas.1613792113 pmid: 27864513
[6]   Feng P C, Qi Y, Chiu T, et al.Improving hybrid seed production in corn with glyphosate-mediated male sterility. Pest Manag Sci, 2014, 70(2): 212-218.
doi: 10.1002/ps.3526 pmid: 23460547
[7]   Rao G S, Tyagi A K, Rao K V.Development of an inducible male-sterility system in rice through pollen-specific expression of l-ornithinase (argE) gene of E. coli. Plant Sci, 2017, 256: 139-147.
doi: 10.1016/j.plantsci.2016.12.001 pmid: 28167027
[8]   Kempe K, Rubtsova M, Gils M.Split-gene system for hybrid wheat seed production. Proc Natl Acad Sci USA, 2014, 111(25): 9097-9102.
doi: 10.1073/pnas.1402836111 pmid: 24821800
[9]   Kempe K, Rubtsova M, Riewe D, et al.The production of male-sterile wheat plants through split barnase expression is promoted by the insertion of introns and flexible peptide linkers. Transgenic Res, 2013, 22(6): 1089-1105.
doi: 10.1007/s11248-013-9714-7 pmid: 23720222
[10]   万向元,吴锁伟,周岩,等. 植物花粉发育调控基因Ms1及其编码蛋白: 中国, ZL201410381072.5, 2017-09-05.[2017-08-19]. .
[10]   Wan X Y, Wu S W, Zhou Y, et al.The DNA Sequence and the Coded Orotein of Ms1 Gene Which Controls the Male Fertility of Plants. China, ZL201410381072.5,2017-09-05.[2017-08-19]. .
[11]   万向元,吴锁伟,谢科,等. 一种控制玉米雄性生育力的ZmMs7基因序列及其编码蛋白,中国,ZL201410338212.0, 2017-09-05.[2017-08-19].
[11]   Wan X Y, Wu S W, Xie K, et al.The DNA Sequence and the Coded Protein of ZmMs7 Gene Which Controls the Male Fertility of Maize. China, ZL201410338212.0,2017-09-05.[2017-08-19]. .
[12]   万向元,吴锁伟,周岩,等.一种玉米花粉减数分裂后发育调控基因Ms30的DNA 序列及其编码蛋白,中国,ZL201410703778.9, 2017-04-12.[2017-08-19]. .
[12]   Wan X Y, Wu S W, Xie K, et al.The DNA Sequence and the Coded Protein of a Pollen Post-meiotic Developmental Gene Ms30 in Maize. China, ZL201410703778.9, 2017-04-12.[2017-08-19]. .
[13]   万向元,吴锁伟,张丹凤,等.玉米花粉发育调控基因Ms33的DNA 序列及其编码蛋白,中国,CN201610880590.0, 2017-02-15.[2017-08-19]. .
[13]   Wan X Y, Wu S W, Zhang D F, et al.The DNA Sequence and the Coded Protein of a Pollen Developmental Gene Ms33 in Maize. China, CN201610880590.0,2017-02-15. [2017-08-19]. .
[14]   万向元,吴锁伟,谢科,等. 基于Ms1基因构建的介导玉米雄性生育力的多控不育载体及其应用,中国,ZL201510298173.0, 201702-27.[2017-08-19]..
[14]   Wan X Y,Wu S W,Xie K, et al.The Multi-control Male Sterility Constructs Based on Ms1 Gene and Their Application. China, ZL201510298173.0, 2017-02-27.[2017-08-19]. .
[15]   万向元,谢科,吴锁伟,等. 一种基于Ms7基因构建的多控不育表达载体及其用于保持和繁殖玉米隐性核不育系的方法,中国,ZL201510301333.2, 2017-03-08.[2017-08-19]. .
[15]   Wan X Y, Xie K, Wu S W, et al.The Multi-control Male Sterility Constructs Based on Ms7 Gene and Their Application in Maintaining and Producing Maize Recessive Genic Male Sterility Lines. China, ZL201510301333.2, 2017-03-08.[2017-08-19]. .
[16]   万向元,吴锁伟,谢科,等. 一种基于Ms30基因建立的玉米雄性不育系保持和繁殖的方法,中国,ZL201510300778.9, 2017-02-22.[2017-08-19]. .
[16]   Wan X Y, Xie K, Wu S W, et al.The methods of maintaining and producing maize recessive genic male sterility lines based on Ms30 gene. China, ZL201510300778.9, 2017-02-22.[2017-08-19]. .
[17]   USDA-APHIS.Pioneer Hi-Bred International, Inc. Seed Production Technology (SPT) Process OECD Unique Identifier: DP-3213-1 Corn: Final Environmental Assessment. Riverdale, MD: United States Department of Agriculture Animal and Plant Health Inspection Service. [2017-11-15]. 2011.
[18]   FSANZ. New Plant Breeding Techniques. Report of a Workshop hosted by Food Standards Australia New Zealand (FSANZ). [2017-11-15].. 2012.
[19]   Japan-MHLW, The outcome of the discussion on F1 hybrid seeds produced with the DuPont’s Seed Production Technology (SPT) using DP-1. Japan Ministry of Health, Labor, and Welfare. [2017-11-15].. 2013.
[20]   王玉峰, 黄霁月, 杨金水. 基因工程培育可恢复的植物雄性不育系的研究进展. 遗传, 2011, 33(1): 40-47.
doi: 10.3724/SP.J.1005.2011.00040
[20]   Wang Y F, Huang J Y, Yang J S.Progress in the study of producing reversible male sterile line by genetic engineering. Hereditas (Beijing), 2011, 33(1): 40-47.
doi: 10.3724/SP.J.1005.2011.00040
[1] CHEN Ya-chao,LI Nan-nan,LIU Zi-di,HU Bing,LI Chun. Metagenomic Mining of Functional Genes Related to Glycyrrhizin Synthesis from Endophytes of Licorice[J]. China Biotechnology, 2021, 41(9): 37-47.
[2] LIANG Jin-gang,ZHANG Xu-dong,BI Yan-zhe,WANG Hao-qian,ZHANG Xiu-jie. Development Status and Prospect of Genetically Modified Insect-resistant Maize[J]. China Biotechnology, 2021, 41(6): 98-104.
[3] YIN Ze-chao,WANG Xiao-fang,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Advances on Genetic Research and Mechanism Analysis on Maize Resistance to Ear Rot[J]. China Biotechnology, 2021, 41(12): 103-115.
[4] HE Wei,ZHU Lei,LIU Xin-ze,AN Xue-li,WAN Xiang-yuan. Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize[J]. China Biotechnology, 2021, 41(12): 13-23.
[5] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[6] QIN Wen-xuan,LIU Xin,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Leaf Angle Traits[J]. China Biotechnology, 2021, 41(12): 74-87.
[7] WANG Rui-pu,DONG Zhen-ying,GAO Yue-xin,LONG Yan,WAN Xiang-yuan. Research Progress on Genetic Structure and Regulation Mechanism on Starch Content in Maize Kernel[J]. China Biotechnology, 2021, 41(12): 47-60.
[8] MA Ya-jie,GAO Yue-xin,LI Yi-ping,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height[J]. China Biotechnology, 2021, 41(12): 61-73.
[9] LIU Di,ZHANG Hong-chun. Advances in Genetically Engineered Animal Models of Chronic Obstructive Pulmonary Disease[J]. China Biotechnology, 2020, 40(4): 59-68.
[10] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[11] CHEN Chun-lin,QIN Song,SONG Wan-lin,LIU Zhi-dan,LIU Zheng-yi. Progress on Biological Preparation of Alginate Oligosaccharides[J]. China Biotechnology, 2020, 40(10): 85-95.
[12] QI Jia-long, GAO Rui-yu, JIN Shu-mei, GAO Fu-lan, YANG Xu, MA Yan-bing, LIU Cun-bao. Expression and Identification of Varicella-Zoster Virus Glycoprotein E and Immunogenicity Assay[J]. China Biotechnology, 2019, 39(8): 17-24.
[13] Shi-qiang ZHU,Xiang-an LU,Chun-han YU,Yi-fan DAI,Yue QIU,Ji-shuang CHEN. Effects of Thermal Oxidative Aging on Wheat Straw / Rubber Biomass Imitation Rattan[J]. China Biotechnology, 2019, 39(7): 32-38.
[14] WANG You-hua,ZOU Wan-nong,LIU Xiao-qing,WANG Zhaohua,SUN Guo-qing. Global Patent Analysis and Technology Prospect of Genetically Modified Maize[J]. China Biotechnology, 2019, 39(12): 83-94.
[15] ZENG Qiang,MENG Qiu-cheng,DENG Li-hua,LI Jin-jiang,YU Jiang-hui,WENG Lu-shui,XIAO Guo-ying. Identification and Analysis of Important Phenotypes of E1C608 with Glyphosate Resistance and Lepidopteran Resistance in Rice[J]. China Biotechnology, 2019, 39(11): 31-38.