Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (11): 1-8    DOI: 10.13523/j.cb.20141101
    
miRDOA:A Integrated Database of MicroRNA Include Data Storage and Online Analysis
LI Jun-e, JIA Li-juan, YAN Peng-cheng, YAN Xue-qing, XIE Guo-yun, CHEN Yu-bao
Beijing Computing Center, Beijing 100094, China
Download: HTML   PDF(1343KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

miRNA (microRNA) is a kind of small non-coding RNAs that generally exist in animals, plants, and other species. The study shows that there are miRNAs in protozoa and viruses. miRNAs play crucial roles in many biogenesis, for example, biological growth, development, cell apoptosis, neurological disorders, cancer and other aspects. miRNAs can also be used as biomarkers in the diagnosis and treatment of diseases such as cancer. miRDOA (miRNA Database and Online Analysis) is designed to retrieve and analyze sequencing data and expression profiles of miRNAs. It provides browsing and searching function for miRNAs, targetor sequences. It also provides online analysis of High-throughputsequencing data, target prediction,expression profiles analysis and online BLAST. miRDOA will be updated over time and is free available for non-commercial use atmirdoa.biocloud.org.cn.



Key wordsmiRNA      High-throughput sequencing      Target gene      Online analysis     
Received: 20 September 2014      Published: 25 November 2014
ZTFLH:  R318  
Cite this article:

LI Jun-e, JIA Li-juan, YAN Peng-cheng, YAN Xue-qing, XIE Guo-yun, CHEN Yu-bao. miRDOA:A Integrated Database of MicroRNA Include Data Storage and Online Analysis. China Biotechnology, 2014, 34(11): 1-8.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20141101     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I11/1


[1] Sun K, Lai E C. Adult-specific functions of animal microRNAs. Nat Rev Genet, 2013,14(8): 535-548.

[2] Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004,116(2): 281-297.

[3] Krek A, Grun D, Poy M N, et al. Combinatorial microRNA target predictions. Nat Genet, 2005,37(5): 495-500.

[4] Lai E C, Posakony J W. The Bearded box, a novel 3' UTR sequence motif, mediates negative post-transcriptional regulation of bearded and enhancer of split complex gene expression. Development, 1997,124(23): 4847-4856.

[5] Flynt A S, Lai E C. Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet, 2008,9(11): 831-842.

[6] Hsu S D, Tseng Y T, Shrestha S, et al. miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Research, 2014,42(D1): D78-D85.

[7] Wang X. miRDB: A microRNA target prediction and functional annotation database with a wiki interface. RNA, 2008,14(6):1012-1017.

[8] Garcia D M, Baek D, Shin C, et al. Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol, 2011, 18(10):1139-1146.

[9] Bartel D P. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2): 215-233.

[10] Sand M, Skrygan M, Georgas D, et al. The miRNA machinery in primary cutaneous malignant melanoma, cutaneous malignant melanoma metastases and benign melanocytic nevi. Cell and Tissue Research, 2012, 350(1): 119-126.

[11] Wienholds E, Plasterk R H. MicroRNA function in animal development. FEBS Letters, 2005, 579(26): 5911-5922.

[12] Friedman R C, Farh K K, Burge C B, et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 2009, 19(1): 92-105.

[13] Farazi T A, Spitzer J L, Morozov P, et al. miRNAs in human cancer. The Journal of Pathology, 2011, 223(2): 102-115.

[14] Huang J, Wang J, Srivastava V, et al. MicroRNA machinery genes as novel biomarkers for cancer. Frontiers in Oncology, 2014,19(4):113.

[15] Wang J, Czech B, Crunk A, et al. Deep small RNA sequencing from the nematode Ascaris reveals conservation, functional diversification, and novel developmental profiles. Genome research, 2011, 21(9):1462-1477.

[16] Baker M. MicroRNA profiling: separating signal from noise. Nat Meth, 2010, 7(9):687-692.

[17] Desvignes T, Beam M J, Batzel P, et al. Expanding the annotation of zebrafish microRNAs based on small RNA sequencing. Gene, 2014,546(2):386-389.

[18] Tanaka T, Kobayashi F, Joshi G, et al. Next-generation survey sequencing and the molecular organization of wheat chromosome 6B. DNA Res, 2014,21(2):103-114.

[19] Metpally R P, Nasser S, Malenica L, et al. Comparison of analysis tools for mirna high throughput sequencing using nerve crush as a model. Front Genet, 2013, 4:20.

[20] Sandhu S, Garzon R. Potential Applications of MicroRNAs in Cancer Diagnosis, Prognosis, and Treatment. Seminars in Oncology, 2011, 38(6):781-787.

[21] Witten D, Tibshirani R, Gu S, et al. Ultra-high throughput sequencing-based small RNA discovery and discrete statistical biomarker analysis in a collection of cervical tumours and matched controls. BMC Biology, 2010, 8(1):58.

[22] Pang M, Woodward A W, Agarwal V, et al. Genome-wide analysis reveals rapid and dynamic changes in miRNA and siRNA sequence and expression during ovule and fiber development in allotetraploid cotton (Gossypium hirsutum L.). Genome Biol, 2009, 10(11):R122.

[23] Zhu Q, Spriggs A, Matthew L, et al. A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res, 2008, 18(9):1456 - 1465.

[24] Git A, Dvinge H, Salmon-Divon M, et al. Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA, 2010, 16(5): 991-1006.

[25] Griffiths-Jones S, Moxon S, Marshall M, et al. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Research, 2005, 33:D121-D124.

[26] Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research, 2014, 42(D1): D68-D73.

[27] Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res, 2011, 39:D152 - D157.

[28] Zhang Z, Yu J, Li D, et al. PMRD: plant microRNA database. Nucleic Acids Research, 2010, 38(1): D806-D813.

[29] Sun X, Dong B, Yin L, et al. PMTED: a plant microRNA target expression database. BMC Bioinformatics, 2013, 14(1): 174.

[1] WANG Yu-xuan,CHEN Ting,ZHANG Yong-liang. Research Progress on the Biological Function of MiR-148[J]. China Biotechnology, 2021, 41(7): 74-80.
[2] TANG De-ping,XING Meng-jie,SONG Wen-tao,YAO Hui-hui,MAO Ai-hong. Advance of microRNA Therapeutics in Cancer and Other Diseases[J]. China Biotechnology, 2021, 41(11): 64-73.
[3] DAI Han-ying,XU Ke-qian. Research Progress on DNA Double-Strand Break Assay[J]. China Biotechnology, 2020, 40(8): 55-62.
[4] CHEN Xue-yan,ZHANG Na,CHEN Juan,YANG Yan-hong,ZHANG Ju-feng. Effect of Hsa-miR-411-3P on Gastric Cancer Cells and Related Mechanisms[J]. China Biotechnology, 2020, 40(4): 1-9.
[5] WANG Hui-yu, HE Tong-tong, LIU Jia-jia, FAN Hang, SONG Feng-lin, MEI Lin, TONG Yi-gang, HAN Xue-qing. The Investigation of RNA Viruses in Mosquitoes via High-Throughput Sequencing[J]. China Biotechnology, 2017, 37(11): 1-5.
[6] TANG Zhi-xiong, GOU De-ming. Research Progress on miRNA Regulation of Myogenesis[J]. China Biotechnology, 2017, 37(10): 103-110.
[7] CHEN Min, CHEN Hui, BAO Hai, HUANG Peng, WANG Yan-wei. Advances in the Research of miRNA Promoters in Plants[J]. China Biotechnology, 2016, 36(5): 125-131.
[8] LIU Yi-xuan, BIAN Zhen, MA Hong-mei. Progress and Prospect of Cancer Gene Therapy[J]. China Biotechnology, 2016, 36(5): 106-111.
[9] CHEN Li-na, TENG Mu-zhou, LU Yan-fang, ZHENG Wen-ling, MA Wen-li. miR-335 Expression in Tumor Tissues and Bioinformatic Analysis of Predicted Target Genes[J]. China Biotechnology, 2016, 36(3): 23-30.
[10] DUAN Jian-ping, LI Ying, KAN Yun-chao, YAO Lun-guang, XIA Qing-you. Ectopical Expression of Silkworm Male-specific dsxM3 and Its Effect on Downstream Targets[J]. China Biotechnology, 2016, 36(2): 38-42.
[11] LIANG Gao-feng, HE Xiang-feng, CHEN Bao-an. Progress in the Research of miRNA on Tumor Molecular Diagnosis and Therapy[J]. China Biotechnology, 2015, 35(9): 57-65.
[12] YU Xin-xin, GAO Jin-jun, LI Yong, LI Jing. Transcriptome Analysis of Arabidopsis thaliana and Changes of Glucosinolates Metabolism Pathway Induced by Flg22[J]. China Biotechnology, 2014, 34(5): 30-38.
[13] LI Hong-yi, XI Qian-yun, ZHANG Yong-liang. Identification miRNAs That Regulate Porcine TNF-α Expression Through Targeting TNF-α UTR[J]. China Biotechnology, 2014, 34(10): 35-40.
[14] TIAN Wen-hong, HU Jian-yang, DONG Xiao-yan, LI Ming-hao, WU Xiao-bing. Detection of miR-21 Activity in Normal Mouse Liver Using Biosensors[J]. China Biotechnology, 2013, 33(1): 60-66.
[15] LV Chang-yong, CHEN Chao-yin, GE Feng, LIU Di-qiu, KONG Xiang-jun. The New Development of the Research Method for Molecular Microbial Ecology[J]. China Biotechnology, 2012, 32(08): 111-118.