Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (10): 0-0    DOI:
    
To normalize the using of quantitative real-time reverse transcription PCR
Download: HTML   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Quantitative real-time reverse transcription-PCR (RT-qPCR ) is an efficient tool to measure absolute transcript abundance and provides valuable quantitative information on gene expression of biologic samples from different sources. Thousands of research laboratories worldwide have embraced RT-qPCR as a frequently used method for measuring genes expression in transcript levels because of its relatively low cost, high precision, and high sensitivity, as well as flexibility and scalability. However, despite its popularity, more and more researchers begin to realize that the accuracy of RT-qPCR gene expression analysis depends largely on a proper normalization. However, the simplicity of the technology itself makes it vulnerable for abuse in experiments in which the operator does not perform the required quality control throughout the entire procedure. Here, we review entire RT-qPCR workflow and indicated point by point where and how critical issues can be resolved, such as experiment design, sample and assay quality control, selection of proper reference genes for normalization, data analysis and reporting guidelines. Following the advice in this paper, any user should be able to do (more) successful gene expression profiling using the RT-qPCR technology.

Key wordsReal time RT-qPCR      normalization      gene expression     
Received: 01 June 2010      Published: 19 October 2010
Cite this article:

. To normalize the using of quantitative real-time reverse transcription PCR. China Biotechnology, 2010, 30(10): 0-0.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I10/0

参考文献 [1].Nolan T, Hands RE, Bustin SA, et al. Quantification of mRNA using real-time PCR. Nat. Protoc., 2006,1(3):1559-1582. [2].Vandesompele J, De Preter K, Pattyn F, et al .Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome Biol. 2002, 3(7):RESEARCH0034. Epub 2002 Jun 18. [3].Derveaux S, Vandesompele J, Hellemans J. How to do successful gene expression analysis using real-time PCR.Methods, 2010, 50(4):227-230. [4].Bernard PS, Wittwer CT. Real-time PCR technology for cancer diagnostics. Clin Chem, 2002, 48(8):1178-1185. [5].Bustin SA, Mueller R.Real-time reverse transcription PCR (RT-qPCR) and its potential use in clinical diagnosis. Clin Sci (Lond), 2005, 109(4):365-379. [6].Bustin SA, Nolan T. Pitfalls of quantitative realtime reverse-transcription polymerase chain reaction. J Biomol Tech, 2004, 15(3):155-166. [7].Hellemans J, Mortier G, De Paepe A, et al. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol, 2007, 8(2):R19. [8]. Fleige S, Pfaffl MW. RNA integrity and the effect on the real-time RT-qPCR performance. Mol Aspects Med. 2006,27(2-3):126-139. [9]. Huggett JF, Novak T, Garson JA, et al. Differential susceptibility of PCR reactions to inhibitors: an important and unrecognised phenomenon. BMC Res Notes, 2008,28 (1):70. [10].Nolan T, Hands RE, Ogunkolade W, et al. SPUD: a quantitative PCR assay for the detection of inhibitors in nucleic acid preparations. Anal Biochem., 2006, 351(2): 308-310. [11].Hoebeeck J, van der Luijt R, Poppe B, et al. Rapid detection of VHL exon deletions using real-time quantitative PCR. Lab Invest,2005,85(1):24-33. [12]. Pattyn F, Robbrecht P, De Paepe A, et al. RT Primer DB: the real-time PCR primer and probe database, major update 2006. Nucleic Acids Res, 2006, 34:D684–688. [13].Andersen CL, Jensen JL, Orntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer datasets. Cancer Res, 2004, 64(15):5245-5250. [14].Vandesompele J, De Preter K, Pattyn F, et al . GeNorm software manual, update 6 2004. Available from: . [15].NormFinder Software. Available from: . [16].Segers-Nolten GM, Wyman C, Wijgers N, et al. Scanning confocal fluorescence microscopy for single molecule analysis of nucleotide excision repair complexes. Nucleic Acids Res,2002,30(21):4720-4727. [17].Karlen Y, McNair A, Perseguers S, et al. Statistical significance of quantitative PCR. BMC Bioinformatics, 2007, 20(8):131. [18].Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc, 2008, 3(6):1101-1108. [19].Hellemans J, Preobrazhenska O, Willaert A, et al. Loss-of-function mutations in LEMD3 result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis. Nat Genet, 2004, 36(11):1213-1218. [20].Willems E, Leyns L, Vandesompele J. Standardization of real-time PCR gene expression data from independent biological replicates. Anal Biochem, 2008, 379(1):127-129. [21].Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res, 2002, 30(9):e36. [22].Lefever S, Hellemans J, Pattyn F, et al. RDML: structured language and reporting guidelines for real-time quantitative PCR data. Nucleic Acids Res, 2009, 37(7):2065-2069. [23].Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem, 2009, 55(4):611-622.
[1] Jian-xue TANG,Yong-le XIAO,Jun-jie PENG,Shi-ji ZHAO,Xiao-ping WAN,Rong GAO. Expression of Fusion Antibacterial Peptide in Recombinant Pichia pastoris and Its Bioactivity In Vitro[J]. China Biotechnology, 2018, 38(6): 9-16.
[2] Li-peng YAO,Wei GE,Ying-jun HU,Hai-yan LUO,Shan-shan WU,Fei-lei LIN,Jun-ming GUO. The Structural and Functional Characteristics of Circular RNAs and Their Relationships with Gastric Cancer[J]. China Biotechnology, 2018, 38(2): 82-88.
[3] ZHANG Yan-fang, SUN Rui-fen, GUO Shu-chun, HOU Jian-hua. Cloning and Expression Analysis of V-type Proton ATPase Subunit a3 Gene in Sunflower (Helianthus annuus L.)[J]. China Biotechnology, 2017, 37(5): 19-27.
[4] XIANG Li, WANG Shen, TIAN Hai-shan, ZHONG Mei-juan, ZHOU Ru-bin, CAO Ding-guo, LIANG Peng, ZHANG Guo-ping, HE Tao, PANG Shi-feng. Constructing Mouse pET3C-Myc Vector and Its Expression in Rosetta(DE3) and Its Purification[J]. China Biotechnology, 2017, 37(2): 20-25.
[5] WANG Xi-guang, WANG Juan, ZHANG Lin. A. thaliana Protein Abundance Analysis Coresponding with Elongation Efficiency[J]. China Biotechnology, 2017, 37(2): 40-47.
[6] LI Xiao-fei, CAO Ying-xiu, SONG Hao. CRISPR/Cas9 System:A Recent Progress[J]. China Biotechnology, 2017, 37(10): 86-92.
[7] SHI Li-ping, JI Jing, WANG Gang, JIN Chao, XIE Chao, DU Xi-long, GUAN Chung-feng, ZHANG Lie, LI Chen. The Expression and Analysis of Terpene Synthesis Related Genes in Maize under the Condition of Salt Stress[J]. China Biotechnology, 2016, 36(8): 31-37.
[8] LI Da, DAI Peng, WANG Wei, ZHANG Wen-tao, WANG Qin, SHU Yi, ZHU Chun-lai, JI Qi-feng, LIANG Ping, YAN Zhen. Cloning and Expression of PLCE1 Gene and Its Haplotypes of rs2274223 and rs3765524[J]. China Biotechnology, 2016, 36(12): 1-7.
[9] SUN Rui-fen, ZHANG Yan-fang, GUO Shu-chun, YU Hai-feng, LI Su-ping, QIAO Hui-lei, NIE Hui, AN Yu-lin. Cloning and Expression Analysis of ACC Oxidase Gene ( HaACO1) from Sunflower (Helianthus annuus L.)[J]. China Biotechnology, 2015, 35(9): 21-27.
[10] ZHA Dai-ming, ZHANG Bing-huo, LI Han-quan, YAN Yun-jun. Research Advances in Molecular Biology of Pseudomonas Lipases[J]. China Biotechnology, 2015, 35(9): 114-121.
[11] GAO Fei, ZHOU Jing, LIU Xiao-tong, LI Cheng-lei, YAO Hui-peng, ZHAO Hai-xia, WU Qi . Cloning and Expression Analysis One Zinc Finger Protein Gene FtLOL1 in Fagopyrum tataricum: Effect of Abiotic Stress[J]. China Biotechnology, 2015, 35(8): 44-50.
[12] XU Deng-an, ZHAO Chun-qin, ZHANG Chi-hong, CHEN Jing. Expression Patterns of a Root-specific Barley Aquaporin Gene HvTIP2;1 and Promoter[J]. China Biotechnology, 2015, 35(7): 15-21.
[13] CUI Cheng-cheng, BI Yan-hong, WANG Ying-ming, LI Pan, YANG Si-da, HUANG Fen, ZENG Wei-kun, JING Shen-rong. Screening of ER3 Sequences Enhanced Protein Expression Activity and Its Functional Regions Identification[J]. China Biotechnology, 2015, 35(3): 18-24.
[14] WANG Hai-bo, YE Yu-jia, MENG Zhao-hui. Preliminary Crystallization of Human Thyroid Hormone Receptor Interacting Protein 15 and Its Expression in Human Tissue[J]. China Biotechnology, 2014, 34(4): 21-26.
[15] XU Jun, LIU Cui-cui, DING De-wu, SUN Xiao, XIE Jian-ming. Reconstruction and Analysis of the Gene Regulatory Networks of Shewanella onedensis MR-1[J]. China Biotechnology, 2014, 34(11): 42-46.