Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (2): 82-88    DOI: 10.13523/j.cb.20180212
Orginal Article     
The Structural and Functional Characteristics of Circular RNAs and Their Relationships with Gastric Cancer
Li-peng YAO1,2,Wei GE1,Ying-jun HU1,Hai-yan LUO1,Shan-shan WU1,Fei-lei LIN1,Jun-ming GUO2*()
1 Ningbo College of Health Sciences,Ningbo 315000, China
2 Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology,Medical School of Ningbo University, Ningbo 315211, China
Download: HTML   PDF(527KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Circular RNAs (circRNAs) are a newly discovered RNA molecules, which are widely distributed in mammalian cells. They do not have 5'cap and 3' tail, but have a high degree of sequence conservation and stability, and not easy to be degraded by RNA exonuclease. What’s more, they not only can regulate the expression of genes, but also play a regulatory role at transcriptional or transcriptional levels. In recent years, circRNAs have been found to be associated with many tumors including gastric cancer. The formation, classification, molecular characterization and function of circRNAs were introduced. Then, the relationships between circRNAs and gastric cancer are analyzed from three aspects: the correlations between circRNAs and gastric cancer occurrence, the values of circRNAs in the diagnosis of gastric cancer, and the roles of circRNAs in the treatment of gastric cancer.



Key wordscircRNA      Gastric cancer      Gene expression      Tumor     
Received: 30 October 2017      Published: 21 March 2018
ZTFLH:  Q819  
Cite this article:

Li-peng YAO,Wei GE,Ying-jun HU,Hai-yan LUO,Shan-shan WU,Fei-lei LIN,Jun-ming GUO. The Structural and Functional Characteristics of Circular RNAs and Their Relationships with Gastric Cancer. China Biotechnology, 2018, 38(2): 82-88.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180212     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I2/82

Fig.1 Models of circRNA formation
Species Sequencing samples CircRNAs’ number References
Homo sapiens fetal head 1184 [9]
19 and 37 weeks female fetal cerebellum 21071
20 and 22 weeks male fetuses diencephalon 24632
20 and 22 weeks female fetal frontal lobe 38983
22 weeks male fetuses and
20 weeks female fetuses occipital lobe 31085
24 weeks female fetuses and
22 weeks parietal male fetuses 23303
20 and 24 weeks female fetuses temporal lobe 21835 [10]
Human neuroblastoma cells SH-SY5Y 4264 [15]
Human fibroblasts Hs68 cell line 7771
H9 cell line 103
Cell line including A549,AG04450,BJ,GM12878,H1-hESC,HeLa S3,HepG2, HMEC, HSMM, HUVEC, K562, MCF-7, NHEK, NHLF and SK-N-SHRA 181535
CD19+, CD34+, HEK293 and Neutrophil cell line 2487 [4]
cell-free saliva, CFS >400 [16]
Table 1 Numbers of identified circRNAs in human cells
Fig.2 The main functions of circRNAsFAK: Focal adhesion kinase;HIF1α: Human hypoxia-inducible factor 1α; Tat: Transactivating regulatory protein; RCA: Rolling circle amplification mechanism; HDV: Hepatitis D virus; ci-ankrd52: ci-ankyrin repeat domain 52
circRNA Sample
type
Sample number Expression
in tumors
Clinical
correlation
Function Methods Reference
hsa_circ_
002059
Tissue/
Plasma
101 Paired cancer tissues and adjacent nontumorous tissues; 36 paired plasma samples from preoperative and postoperative patients Down Distal metastasis, TNM stage, Gender and age qRT-PCR [37]
hsa_circ_
0001649
Tissue/
plasma
76 Tumor tissue samples and their paired paracancerous histological normal tissues; 20 patients’ whole blood samples preoperatively and postoperatively Down Pathological differentiation qRT-PCR [32]
hsa_circ_
0000190
Tissue/
plasma
104 paired cancer tissues and adjacent non-tumor tissues; 104 plasma samples from cancer patients or health controls Down Tumor diameter, lymphatic metastasis,distal metastasis, TNM stage and CA19-9 levels qRT-PCR [33]
hsa_circ_
0000096
Tissue 101 paired cancer tissues and adjacent non-tumorous tissues Down Promotes cancer cell growth and migration by regulating cyclin D1, CDK6, MMP-2 and MMP-9 qRT-PCR [34]
circPVT1 Tissue 187 Paired cancer specimens and adjacent normal tissues Up An independent prognostic marker for overall survival and disease-free survival Promote cell proliferation by acting as a sponge for miR-125 family members qRT-PCR [43]
hsa_circ_
0003159
Tissue 108 paired gastric cancer tissues and adjacent non- tumorous tissues Down Gender, distal metastasis,tumor-node-metastasis stage qRT-PCR [46]
hsa_circ_
0001895
Tissue 96 gastric cancer tissues and their adjacent non-tumorous tissues,35 healthy gastric mucosa and 30 gastric dysplasia tissues Down Cell differentiation, Borrmann type, tissue carcinoembryonic antigen expression qRT-PCR [47]
hsa_circ_
0006633
Tissue/
plasma
96 gastric cancer tissues and their adjacent non-tumorous tissues,35 human healthy gastric mucosa, 51 gastritis mucosa, and 20 gastric dysplasia tissues;Plasma samples were obtained from 20 healthy volunteers and 20 gastric cancer patients Down Distal metastasis,tissue CEA level qRT-PCR [48]
Table 2 circRNAs in gastric cancer
[1]   Beeharry M K, Liu W T, Yan M , et al. New blood markers detection technology: A leap in the diagnosis of gastric cancer. World J Gastroenterol, 2016,22(3):1202-1212.
doi: 10.3748/wjg.v22.i3.1202 pmid: 26811658
[2]   Jemal A, Bray F, Center M M , et al. Global cancer statistics. CA Cancer J Clin, 2011,61(2):69-90.
doi: 10.3322/caac.v61:2
[3]   Wang J, Qu J, Li Z , et al. Pretreatment platelet-to-lymphocyte ratio is associated with the response to first-line chemotherapy and survival in patients with metastatic gastric cancer. J Clin Lab Anal, 2018,32(1).doi: 10.1002/jcla.22185.
doi: 10.1002/jcla.22185 pmid: 28238215
[4]   Memczak S, Jens M, Elefsinioti A , et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013,495(7441):333-338.
doi: 10.1038/nature11928 pmid: 23446348
[5]   Shao Y, Li J, Lu R , et al. Global circular RNA expression profile of human gastric cancer and its clinical significance. Cancer Med, 2017,6(6):1173-1180.
doi: 10.1002/cam4.1055 pmid: 28544609
[6]   Cocquerelle C, Mascrez B, Hétuin D , et al. Mis-splicing yields circular RNA molecules. FASEB J, 1993,7(1):155-160.
doi: 10.1006/excr.1993.1021 pmid: 7678559
[7]   Guo J U, Agarwal V, Guo H , et al. Expanded identification and characterization of mammalian circular RNAs. Genome Biol, 2014,15(7):409.
doi: 10.1186/s13059-014-0409-z pmid: 4165365
[8]   Qu S, Yang X, Li X , et al. Circular RNA: A new star of noncoding RNAs. Cancer Lett, 2015,365(2):141-148.
doi: 10.1016/j.canlet.2015.06.003 pmid: 26052092
[9]   Jeck W R, Sorrentino J A, Wang K , et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 2013,19(2):141-157.
doi: 10.1261/rna.035667.112
[10]   Zhang Y, Zhang X O, Chen T , et al. Circular intronic long noncoding RNAs. Molecular Cell, 2013,51(6):792-806.
doi: 10.1016/j.molcel.2013.08.017 pmid: 24035497
[11]   Huang G, Li S, Yang N , et al. Recent progress in circular RNAs in human cancers. Cancer Lett, 2017,404:8-18.
doi: 10.1016/j.canlet.2017.07.002 pmid: 28705773
[12]   Zheng Q, Bao C, Guo W , et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun, 2016,7(11215):11215.
doi: 10.1038/ncomms11215 pmid: 27050392
[13]   Salzman J, Chen R E, Olsen M N , et al. Cell-type specific features of circular RNA expression. PLoS Genet, 2013,9(9):e1003777.
doi: 10.1371/journal.pgen.1003777 pmid: 24039610
[14]   Bahn J H, Zhang Q, Li F , et al. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem, 2015,61(1):221-230.
doi: 10.1373/clinchem.2014.230433 pmid: 4332885
[15]   Yao T, Chen Q, Fu L , et al. Circular RNAs: Biogenesis, properties, roles, and their relationships with liver diseases. Hepatol Res, 2017,47(6):497-504.
doi: 10.1111/hepr.12871 pmid: 28185365
[16]   Zhao M, Xie H, Hu Z D , et al. Circular RNA: New type of biomarkers and therapeutic targets. Progress in Biochemistry and Biophysics, 2016,43(7):635-643.
doi: 10.16476/j.pibb.2016.0037
[17]   Nabih E S, Andrawes N G . The association between circulating levels of miRNA-181a and pancreatic beta cells dysfunction via SMAD7 in type 1 diabetic children and adolescents. J Clin Lab Anal, 2016,30(5):727-731.
doi: 10.1002/jcla.21928 pmid: 26892629
[18]   Hansen T B, Jensen T I, Clausen B H , et al. Natural RNA circles function as efficient microRNA sponges. Nature, 2013,495(7441):384-388.
doi: 10.1038/nature11993 pmid: 23446346
[19]   Hansen T B, Kjems J, Damgaard C K . Circular RNA and miR-7 in cancer. Cancer Res, 2013,73(18):5609-5612.
doi: 10.1158/0008-5472.CAN-13-1568 pmid: 24014594
[20]   Braunschweig U , Barbosa-Morais N L, Pan Q, et al. Widespread intron retention in mammals functionally tunes transcriptomes. Genome Res, 2014,24(11):1774-1786.
doi: 10.1101/gr.177790.114 pmid: 25258385
[21]   Kelly S, Greenman C, Cook P R , et al. Exon skipping is correlated with exon circularization. J Mol Biol, 2015,427(15):2414-2417.
doi: 10.1016/j.jmb.2015.02.018 pmid: 25728652
[22]   Li Z, Huang C, Bao C , et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol, 2015,22(3):256-264.
doi: 10.1038/nsmb.2959 pmid: 25664725
[23]   Ashwal-Fluss R, Meyer M, Pamudurti N R , et al. CircRNA biogenesis competes with pre-mRNA splicing. Mol Cell, 2014,56(1):55-66.
doi: 10.1016/j.molcel.2014.08.019 pmid: 25242144
[24]   Ng W L, Marinov G K, Liau E S , et al. Inducible Ras-GEF1B circular RNA is a positive regulator of ICAM-1 in the TLR4/LPS pathway. RNA Biol, 2016,13(9):861-871.
doi: 10.1080/15476286.2016.1207036 pmid: 27362560
[25]   Du W W, Yang W, Liu E , et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res, 2016,44(6):2846-2858.
doi: 10.1093/nar/gkw027 pmid: 26861625
[26]   Bohjanen P R, Colvin R A, Puttaraju M , et al. A small circular TAR RNA decoy specifically inhibits Tat-activated HIV-1 transcription. Nucleic Acids Res, 1996,24(19):3733-3738.
doi: 10.1093/nar/24.19.3733 pmid: 146173
[27]   Abe N, Matsumoto K, Nishihara M , et al. Rolling circle translation of circular RNA in living human cells. Sci Rep, 2015,5:16435.
doi: 10.1038/srep16435 pmid: 26553571
[28]   Xie J, Chen M, Zhou J , et al. MiR-7 inhibits the invasion and metastasis of gastric cancer cells by suppressing epidermal growth factor receptor expression. Oncol Rep, 2014,31(4):1715-1722.
doi: 10.3892/or.2014.3052 pmid: 24573489
[29]   Zhao X, Dou W, He L , et al. MicroRNA-7 functions as an anti-metastatic microRNA in gastric cancer by targeting insulin-like growth factor-1 receptor. Oncogene, 2013,32(11):1363-1372.
doi: 10.1038/onc.2012.156 pmid: 22614005
[30]   Fang Y, Xue J L, Shen Q , et al. MicroRNA-7 inhibits tumor growth and metastasis by targeting the phosphoinositide 3-kinase/Akt pathway in hepatocellular carcinoma. Hepatology, 2012,55(6):1852-1862.
doi: 10.1002/hep.25576 pmid: 22234835
[31]   Janbabai G, Oladi Z, Farazmandfar T , et al. The prognostic impact of EGFR, ErbB2, and MET gene amplification in human gastric carcinomas as measured by quantitative Real-Time PCR. J Cancer Res Clin Oncol, 2015,141(11):1945-1952.
doi: 10.1007/s00432-015-1965-7 pmid: 25820598
[32]   Li W H, Song Y C, Zhang H , et al. Decreased expression of Hsa_circ_00001649 in gastric cancer and its clinical significance. Dis Markers, 2017,2017(2017):1-6.
doi: 10.1155/2017/4587698 pmid: 5266807
[33]   Chen S, Li T, Zhao Q , et al. Using circular RNA hsa_circ_0000190 as a new biomarker in the diagnosis of gastric cancer. Clin Chim Acta, 2017,466(3):167-171.
doi: 10.1016/j.cca.2017.01.025 pmid: 28130019
[34]   Li P, Chen H, Chen S , et al. Circular RNA 0000096 affects cell growth and migration in gastric cancer. Br J Cancer, 2017,116(5):626-633.
doi: 10.1038/bjc.2016.451 pmid: 28081541
[35]   Sui W, Shi Z, Xue W , et al. Circular RNA and gene expression profiles in gastric cancer based on microarray chip technology. Oncol Rep, 2017,37(3):1804-1814.
doi: 10.3892/or.2017.5415 pmid: 28184940
[36]   Wang Y, Wang Z . Efficient backsplicing produces translatable circular mRNAs. RNA, 2015,21(2):172-179.
doi: 10.1261/rna.048272.114 pmid: 25449546
[37]   Li P, Chen S, Chen H , et al. Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta, 2015,444:132-136.
doi: 10.1016/j.cca.2015.02.018 pmid: 25689795
[38]   Zhang Y, Li J, Yu J , et al. Circular RNAs signature predicts the early recurrence of stage III gastric cancer after radical surgery. Oncotarget, 2017,8(14):22936-22943.
doi: 10.18632/oncotarget.15288 pmid: 28206972
[39]   Giles K M, Barker A, Zhang P M , et al. MicroRNA regulation of growth factor receptor signaling in human cancer cells. Methods Mol Biol, 2011,676(19):147-163.
doi: 10.1007/978-1-60761-863-8
[40]   Zhao X, Dou W, He L , et al. MicroRNA-7 functions as an anti-metastatic microRNA in gastric cancer by targeting insulin-like growth factor-1 receptor. Oncogene, 2013,32(11):1363-1372.
doi: 10.1038/onc.2012.156 pmid: 22614005
[41]   Kong X, Li G, Yuan Y , et al. MicroRNA-7 inhibits epithelial-to-mesenchymal transition and metastasis of breast cancer cells via targeting FAK expression. Plos One, 2012,7(8):e41523.
doi: 10.1371/journal.pone.0041523 pmid: 3410899
[42]   Wu D G, Wang Y Y, Fan L G , et al. MicroRNA-7 regulates glioblastoma cell invasion via targeting focal adhesion kinase expression. Chin Med J (Engl), 2011,124(17):2616-2621.
doi: 10.3760/cma.j.issn.0366-6999.2011.17.010 pmid: 22040413
[43]   Li Y, Huang S . Response to “circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer”. Cancer Lett, 2017,388(2017):208-219.
doi: 10.1016/j.canlet.2016.12.006 pmid: 27986464
[44]   Li F, Zhang L, Li W , et al. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget, 2015,6(8):6001-6013.
doi: 10.18632/oncotarget.3469 pmid: 4467417
[45]   Yang W, Du W W, Li X , et al. Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis. Oncogene, 2016,35(30):3919-3931.
doi: 10.1038/onc.2015.460 pmid: 26657152
[46]   Tian M, Chen R, Li T , et al. Reduced expression of circRNA hsa_circ_0003159 in gastric cancer and its clinical significance. J Clin Lab Anal, 2017,3(6). dio:10.1002/jcla22281.
doi: 10.1002/jcla.22281 pmid: 28618205
[47]   Shao Y, Chen L, Lu R , et al. Decreased expression of hsa_circ_0001895 in human gastric cancer and its clinical significances. Tumour Biol, 2017,39(4):1010428317699125.
doi: 10.1177/1010428317699125 pmid: 28443463
[48]   Lu R, Shao Y, Ye G , et al. Low expression of hsa_circ_0006633 in human gastric cancer and its clinical significances. Tumour Biol, 2017,39(6):1010428317704175.
doi: 10.1177/1010428317704175 pmid: 28656881
[1] ZHAO Meng-ze,LI Feng-zhi,WANG Peng-yin,LI Jian,XU Han-mei. Research Progress of Dual-target Blocking Therapy of PD-L1 and VEGF[J]. China Biotechnology, 2021, 41(9): 71-77.
[2] LV Hui-zhong,ZHAO Chen-chen,ZHU Lian,XU Na. Progress of Using Exosome for Drug Targeted Delivery in Tumor Therapy[J]. China Biotechnology, 2021, 41(5): 79-86.
[3] YUAN Bo,WANG Jie-wen,KANG Guang-bo,HUANG He. Research Progress and Application of Bispecific Nanobody[J]. China Biotechnology, 2021, 41(2/3): 78-88.
[4] DENG Rui,ZENG Jia-li,LU Xue-mei. Screening and Structure-activity Relationship Analysis of Anti-tumor Derived Peptides Based on Musca domestica cecropin[J]. China Biotechnology, 2021, 41(11): 14-22.
[5] LIN Shi-xin,LIU Dong-chen,LEI Yun,XIONG Sheng,XIE Qiu-ling. Screening, Expression and Specificity Detection of Anti-TNF-α Nanobody[J]. China Biotechnology, 2020, 40(7): 15-21.
[6] YANG Wei,SONG Fang-xiang,WANG Shuai,ZHANG Li,WANG Hong-xia,LI Yan. Preparation and Application of Janus Nanoparticles in Drug Delivery System[J]. China Biotechnology, 2020, 40(7): 70-81.
[7] ZHANG Bao-hui,XIONG Hua-long,ZHANG Tian-ying,YUAN Quan. Research Progress on Vesicular Stomatitis Virus-based Oncolytic Virotherapy[J]. China Biotechnology, 2020, 40(6): 53-62.
[8] TONG Mei,CHENG Yong-qing,LIU Jin-yi,XU Chen. Construction of a Strain for Promoting Production of Small Molecule Antibodies in Periplasmic Space of Escherichia coli[J]. China Biotechnology, 2020, 40(5): 48-56.
[9] DAI Qi-nan,ZHANG Jing-hong. Advances in Molecular Mechanisms Related to Tumor Multi-drug Resistance, Autophagy, DNA Repair and Tumor Stem Cells[J]. China Biotechnology, 2020, 40(4): 69-77.
[10] CHEN Xue-yan,ZHANG Na,CHEN Juan,YANG Yan-hong,ZHANG Ju-feng. Effect of Hsa-miR-411-3P on Gastric Cancer Cells and Related Mechanisms[J]. China Biotechnology, 2020, 40(4): 1-9.
[11] QIAN Ying,QIAN Chen,BAI Xiao-qing,WANG Jing-jing. Application of Adjuvant in Cancer Immunotherapy[J]. China Biotechnology, 2020, 40(3): 96-103.
[12] XIAO Xue-jun,TANG Qi,XINHUA Nabi. CAR-T Therapy Targeting Tumor Microenvironment[J]. China Biotechnology, 2020, 40(12): 67-74.
[13] HE Xun,ZHANG Peng,ZHANG Jun-xiang. Progress in the Construction and Application of Organoids[J]. China Biotechnology, 2020, 40(12): 82-87.
[14] ZHU Yongzhao,TAO Jin,REN Meng-meng,XIONG Ran,HE Ya-qin,ZHOU Yu,LU Zhen-hui,DU Yong,YANG Zhi-hong. Autophagy Protects Against Apoptosis of Human Placental Mesenchymal Stem Cells of Fetal Origin Induced by Tumor Necrosis Fator-α[J]. China Biotechnology, 2019, 39(9): 62-67.
[15] LIU Yan,DAI Peng,ZHU Yun-feng. Research Progress of Exosome as Tumor Marker[J]. China Biotechnology, 2019, 39(8): 74-79.